Long-acting injectable medicine as potential route to COVID-19 therapy

5-May-2021 12:50 PM EDT, by University of Liverpool

Newswise — Researchers from the University of Liverpool have shown the potential of repurposing an existing and cheap drug into a long-acting injectable therapy that could be used to treat Covid-19.

In a paper published in the journal Nanoscale, researchers from the University's Centre of Excellence for Long-acting Therapeutics (CELT) demonstrate the nanoparticle formulation of niclosamide, a highly insoluble drug compound, as a scalable long-acting injectable antiviral candidate.

The team started repurposing and reformulating identified drug compounds with the potential for COVID-19 therapy candidates within weeks of the first lockdown. Niclosamide is just one of the drug compounds identified and has been shown to be highly effective against SARS-CoV-2 in a number of laboratory studies.

Using their expertise in the fields of materials chemistry, long-acting drug delivery and pharmacology, CELT scientists used nanoprecipitation to form redispersible solid drug nanoparticle formulations of niclosamide that can be stored as solids, reconstituted with water and utilised as long acting injectables. Their research has demonstrated sustained circulating drug concentrations may be maintained for the duration of early infection after a single injection.

CELT is co-directed by pharmacologist Professor Andrew Owen and materials chemist Professor Steve Rannard at the University of Liverpool.

Professor Steve Rannard said: "Repurposing drug compounds is much more than using existing medicines for a new disease. The existing active drug compound needs to be shown to be active at a significant level, then reformulated to address new challenges. The conventional route of administration may also not be relevant and modifying the way the patient receives the drug compound is highly critical to efficacy. Niclosamide is an ideal candidate to be taken forward as a potential long acting injectable therapeutic to treat Covid-19.

"This is still in early-stage development but the CELT team are currently working with a contract manufacturing organisation to take this forward towards scale up and clinical manufacture. This work is progressing well and if successful, human trials would be next. We envisage a future `Test-and-Treat' scenario where infected people are treated at the point of diagnosis with the full course of therapy in one injection."

Professor Andrew Owen said: "Repurposing of medicines for SARS-CoV-2 has yielded mixed results, with some clear successes for immunomodulatory drugs such as dexamethasone, and work underway to repurpose drugs like favipiravir and molnupiravir that were designed for other viruses.

"The ultimate utility of our long-acting injectable can only be determined in adequately powered and well controlled randomised clinical trials but unlike other drugs that have been explored for repurposing niclosamide target concentrations may be achievable in humans. The formulation has shown great promise in preclinical studies at a time when it is increasingly evident that drugs are urgently required to compliment the vaccines.

"A global pandemic requires a global solution, and it is critical that interventions are available to everyone and not to the privileged few. Accordingly, we are currently working to remove obstacles to availability in low- and middle-income countries to ensure equitable access if clinical success is ultimately demonstrated."

This research paper builds on previous reports released from the team in April 2020 and published in Clinical Pharmacology and Therapeutics. The CELT team have strongly advocated in further publications in the British Journal of Clinical Pharmacology, that repurposing of drugs requires new strategies that encompass reformulation and specific dose optimisation that addresses the needs of SARS-CoV-2 treatment.

###

CELT is focused on repurposing existing medicines into slow-release formulations where drug effectiveness can be sustained over several months. This `long-acting' technology has already been successfully implemented in the fields of contraception and schizophrenia. It also has the potential to bolster global efforts to tackle - and even eliminate - major diseases affecting low- and middle-income countries, including HIV/AIDS.

The long-acting therapy development from the team was initiated and supported by funds from the EPSRC and the progression to scale-up and manufacture has received support from Unitaid. The team are actively seeking partners for the next steps of product development and translation.

Established as part of a £30.5 million ($40m) international research consortium, primarily funded by Unitaid, CELT is the first of its kind in the world. For further information, please visit the CELT website. You can also follow the centre on Twitter.

The paper `Scalable nanoprecipitation of niclosamide and in vivo demonstration of long-acting delivery after intramuscular injection' (doi:10.1039/D1NR00309G) is published in Nanoscale.

SEE ORIGINAL STUDY



Filters close

Showing results

110 of 5857
Released: 22-Jun-2021 5:10 PM EDT
Tecnología de inteligencia artificial y ECG puede rápidamente descartar infección por COVID-19
Mayo Clinic

La inteligencia artificial puede ofrecer un manera de determinar con exactitud que una persona no está infectada con la COVID-19. Un estudio internacional y retrospectivo descubrió que la infección por SARS-CoV-2, el virus que causa la COVID-19, provoca sutiles cambios eléctricos en el corazón. Un electrocardiograma (ECG) mediado por inteligencia artificial detecta estos cambios y puede servir como una prueba rápida y confiable para descartar la infección por COVID-19.

Released: 22-Jun-2021 4:45 PM EDT
Penn Medicine to Use $1M from City of Philadelphia for Additional Community Vaccination Clinics
Perelman School of Medicine at the University of Pennsylvania

Penn Medicine will continue its collaboration with the West and Southwest Philadelphia communities to operate a series of COVID-19 vaccine clinics in partnership with community organizations, faith-based institutions, restaurants, barbershops, and even professional sports teams thanks to $1 million in funding from the City of Philadelphia, in partnership with PMHCC.

Released: 22-Jun-2021 12:30 PM EDT
Political Variables Carried More Weight Than Healthcare in Government Response to COVID-19
Binghamton University, State University of New York

Political institutions such as the timing of elections and presidentialism had a larger influence on COVID-19 strategies than the institutions organizing national healthcare, according to a research team led by a professor at Binghamton University, State University of New York.

22-Jun-2021 12:00 PM EDT
Study Testing How Well COVID-19 Vaccine Prevents Infection and Spread of SARS-CoV-2 Among University Students Now Expands to Include Young Adults Beyond the University Setting
Covid-19 Prevention Network (CoVPN)

The Prevent COVID U study, which launched in late March 2021 to evaluate SARS-CoV-2 infection and transmission among university students vaccinated with the Moderna COVID-19 Vaccine, has expanded beyond the university setting to enroll young adults ages 18 through 29 years and will now also include people in this age group who choose not to receive a vaccine.

Newswise: First Wave COVID-19 Data Underestimated Pandemic Infections
18-Jun-2021 8:30 AM EDT
First Wave COVID-19 Data Underestimated Pandemic Infections
American Institute of Physics (AIP)

Two COVID-19 pandemic curves emerged within many cities during the one-year period from March 2020 to March 2021. Oddly, the number of total daily infections reported during the first wave is much lower than that of the second, but the total number of daily deaths reported during the first wave is much higher than the second wave.

Newswise: PNNL AI Expert Harnesses Open-Source Data to Understand Human Behavior
Released: 22-Jun-2021 9:55 AM EDT
PNNL AI Expert Harnesses Open-Source Data to Understand Human Behavior
Pacific Northwest National Laboratory

PNNL researchers used natural language processing and deep learning techniques to reveal how and why different types of misinformation and disinformation spread across social platforms. Applied to COVID-19, the team found that misinformation intended to influence politics and incite fear spreads fastest.

Released: 22-Jun-2021 8:30 AM EDT
Engineering Nanobodies As Lifesavers When SARS-CoV-2 Variants Attack
Ohio State University

Scientists are pursuing a new strategy in the protracted fight against the SARS-CoV-2 virus by engineering nanobodies that can neutralize virus variants in two different ways.

Released: 21-Jun-2021 3:45 PM EDT
Rare Neurological Disorder Documented Following COVID-19 Vaccination
American Neurological Association (ANA)

In two separate articles in the Annals of Neurology, clinicians in India and England report cases of a rare neurological disorder called Guillain-Barré syndrome after individuals were vaccinated against COVID-19.

Newswise: New Analysis reveals link between birthdays and COVID-19 spread during the height of the pandemic
17-Jun-2021 12:10 PM EDT
New Analysis reveals link between birthdays and COVID-19 spread during the height of the pandemic
Harvard Medical School

Risk of SARS-CoV-2 infection increased 30 percent for households with a recent birthday in counties with high rates of COVID-19 Findings suggest informal social gatherings such as birthday parties played role in infection spread at the height of the coronavirus pandemic No birthday-bash infection jumps seen in areas with low rates of COVID-19 Households with children’s birthdays had greater risk of SARS-CoV-2 infection than with adult birthdays

Newswise: COVID-19 dual-antibody therapies effective against variants in animal study
Released: 21-Jun-2021 10:05 AM EDT
COVID-19 dual-antibody therapies effective against variants in animal study
Washington University in St. Louis

A study from Washington University School of Medicine in St. Louis suggests that many, but not all, COVID-19 therapies made from combinations of two antibodies are effective against a wide range of virus variants, and that combination therapies appear to prevent the emergence of drug resistance.


Showing results

110 of 5857

close
1.53116