Argonne National Laboratory

Researchers use ALCF resources to model the spread of COVID-19

27-May-2020 5:05 PM EDT, by Argonne National Laboratory

Newswise — With COVID-19 drastically altering daily life for people across the planet, the U.S. Department of Energy’s (DOE) Argonne National Laboratory has moved quickly to join the global fight against the pandemic. Among the laboratory’s most powerful resources for scientific research is the supercomputer Theta, housed at the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science User Facility. Over 250 nodes on the machine were immediately reserved for multipronged research into the disease.

Led by Argonne computational scientist Jonathan Ozik and Argonne Distinguished Fellow Charles (Chick) Macal, one of these branches of research oversees the development of epidemiological models to simulate the spread of COVID-19 throughout the population.

“This is the most detailed granular simulation of COVID-19 that exists right now in terms of modeling individuals who could be in various disease states, including infectious or hospitalized.” — Chick Macal, Argonne Distinguished Fellow

The models are city-scale simulations of Chicago, populated with just under 3 million agents that represent individuals going about their daily schedules and navigating some 1.2 million sites (houses, schools, workplaces, and so on) that each present possibilities for them to meet, or colocate — that is, possibilities for exposure. Following exposure, an agent can become infected in a severe manner, depending on an agent's profile, which includes age characteristics. A certain number of the infected agents then perish.

These models — running for a simulated year — are revised and improved on a daily basis, in accordance with the most up-to-date data and information. These updates are moving toward a completely automated workflow.

“The workflow ingests updated epidemiological data — for instance, that published daily by the Chicago Department of Public Health — which serve as empirical target trajectories. By comparing these with outputs generated from ensemble model runs, we are able to estimate the pandemic’s underlying parameters,” Ozik said. “It is these calibrated parameters that enable us to run different scenarios with the model.”

“This is the most detailed granular simulation of COVID-19 that exists right now in terms of modeling individuals who could be in various disease states, including infectious or hospitalized,” Macal said.

The models pursue lines of inquiry that will be familiar to anyone following the virus in the news media — for example, the difference in outcome yielded by implementing social distancing measures for however many additional days or weeks.

“What are good ways to ease off the social distancing measures?” Ozik asked. “Everybody’s interested in that for very obvious reasons, but we don’t want to do something that will just create another calamity a few months down the road.”

The significant computational demands of the project result from the models’ stochastic (randomly determined) components, which govern the underlying uncertainties and parameters of the simulation. These parameters govern agent behaviors, as well as disease progression dynamics and transmissibility. Within the model, transmissibility encapsulates the likelihood that a susceptible agent is infected, based on the amount of time that two agents spend together.

“With this model, you have potentially many people interacting in many different ways: some might be infected, some might be susceptible, and they mix in different proportions in a variety of different locations — there are different locations like schools and workplaces where very different parts of the population interface,” Ozik explained. “The multitude of possibilities the model presents make it quite qualitatively different from — and quantitatively more complex than — a statistical model or more simplified compartmental models, which are much faster to run.”

With optimization assistance from ALCF staff, simulation runs on Theta have utilized more than 800 nodes at once. As part of the automated workflow, following these simulation runs, output data are transferred to Petrel (a service provided by Argonne and Globus, a University of Chicago-run non-profit committed to data management) for archival storage and post-processing; this post-processing is completed on Bebop, a high-performance computing cluster operated by Argonne’s Laboratory Computing Resource Center that the team also leverages for simulation runs.

“It’s the big picture that we’re trying to capture with these simulations,” Macal said. “How can we innovate and contribute by generating information unavailable anywhere else? We want to have an impact on the decisions that are being made about social distancing and opening society back up.”

The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines. Supported by the U.S. Department of Energy’s (DOE’s) Office of Science, Advanced Scientific Computing Research (ASCR) program, the ALCF is one of two DOE Leadership Computing Facilities in the nation dedicated to open science.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.




Filters close

Showing results

110 of 2528
Released: 10-Jul-2020 3:05 PM EDT
Simple blood test can predict severity of COVID-19 for some patients
University of Texas Health Science Center at Houston

An early prognosis factor that could be a key to determining who will suffer greater effects from COVID-19, and help clinicians better prepare for these patients, may have been uncovered by researchers at The University of Texas Health Science Center at Houston (UTHealth). Results of the findings were published today in the International Journal of Laboratory Hematology.

Released: 10-Jul-2020 12:50 PM EDT
Genetic ‘fingerprints’ of first COVID-19 cases help manage pandemic
University of Sydney

A new study published in the world-leading journal Nature Medicine, reveals how genomic sequencing and mathematical modelling gave important insights into the ‘parentage’ of cases and likely spread of the disease in New South Wales.

Released: 10-Jul-2020 12:35 PM EDT
Our itch to share helps spread COVID-19 misinformation
Massachusetts Institute of Technology (MIT)

To stay current about the Covid-19 pandemic, people need to process health information when they read the news. Inevitably, that means people will be exposed to health misinformation, too, in the form of false content, often found online, about the illness.

Newswise: Pandemic Inspires Framework for Enhanced Care in Nursing Homes
Released: 10-Jul-2020 12:25 PM EDT
Pandemic Inspires Framework for Enhanced Care in Nursing Homes
University of Pennsylvania School of Nursing

As of May 2020, nursing home residents account for a staggering one-third of the more than 80,000 deaths due to COVID-19 in the U.S. This pandemic has resulted in unprecedented threats—like reduced access to resources needed to contain and eliminate the spread of the virus—to achieving and sustaining care quality even in the best nursing homes. Active engagement of nursing home leaders in developing solutions responsive to the unprecedented threats to quality standards of care delivery is required.

Newswise: General Electric Healthcare Chooses UH to Clinically 
Evaluate First-of-its-kind Imaging System
Released: 10-Jul-2020 12:15 PM EDT
General Electric Healthcare Chooses UH to Clinically Evaluate First-of-its-kind Imaging System
University Hospitals Cleveland Medical Center

University Hospitals Cleveland Medical Center physicians completed evaluation for the GE Healthcare Critical Care Suite, and the technology is now in daily clinical practice – flagging between seven to 15 collapsed lungs per day within the hospital. No one on the team could have predicted the onset of the COVID-19 pandemic, but this technology and future research with GEHC may enhance the capability to improve care for COVID-19 patients in the ICU. Critical Care Suite is now assisting in COVID and non-COVID patient care as the AMX 240 travels to intensive care units within the hospital.

Released: 10-Jul-2020 11:50 AM EDT
COVID-19 Can Be Transmitted in the Womb, Reports Pediatric Infectious Disease Journal
Wolters Kluwer Health: Lippincott Williams and Wilkins

A baby girl in Texas – born prematurely to a mother with COVID-19 – is the strongest evidence to date that intrauterine (in the womb) transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can occur, reports The Pediatric Infectious Disease Journal, the official journal of The European Society for Paediatric Infectious Diseases. The journal is published in the Lippincott portfolio by Wolters Kluwer.

Released: 10-Jul-2020 9:45 AM EDT
How COVID-19 Shifted Inpatient Imaging Utilization
Harvey L. Neiman Health Policy Institute

As medical resources shifted away from elective and non-urgent procedures toward emergent and critical care of COVID-19 patients, departments were forced to reconfigure their personnel and resources. In particular, many Radiology practices rescheduled non-urgent and routine imaging according to recommendations from the American College of Radiology (ACR). This new Harvey L. Neiman Health Policy Institute study, published online in the Journal of American College of Radiology (JACR), evaluates the change in the inpatient imaging volumes and composition mix during the COVID-19 pandemic within a large healthcare system.

access_time Embargo lifts in 2 days
Embargo will expire: 12-Jul-2020 7:00 PM EDT Released to reporters: 10-Jul-2020 9:00 AM EDT

A reporter's PressPass is required to access this story until the embargo expires on 12-Jul-2020 7:00 PM EDT The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

Released: 10-Jul-2020 9:00 AM EDT
Team is first in Texas to investigate convalescent plasma for prevention of COVID-19 onset and progression
University of Texas Health Science Center at Houston

A research team is the first in Texas to investigate whether plasma from COVID-19 survivors can be used in outpatient settings to prevent the onset and progression of the virus in two new clinical trials at UTHealth.


Showing results

110 of 2528

close
2.14367