The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
Brookhaven National Laboratory

Capturing the Chemistry of Light-Activated Cancer Drugs with Ruomei Gao

interview with a CFN user

Ruomei Gao is an associate professor in the Chemistry and Physics Department and member of the Institute for Cancer Research and Education (ICare) at the State University of New York (SUNY) College at Old Westbury, a teaching-intensive, minority-serving liberal arts college. Gao’s research focuses on light-induced chemical reactions (photochemistry) and the chemical composition of matter (analytical chemistry). In particular, she studies photosensitization of porphyrins and thiopurines to produce reactive oxygen species for cancer therapy and prevention, respectively. Since 2014, she has been using facilities at the Center for Functional Nanomaterials (CFN)—a U.S. Department of Energy (DOE) Office of Science User Facility at Brookhaven National Laboratory—to investigate two primary processes of photosensitization. She holds a doctorate in analytical chemistry from the University of Science and Technology of China, a master’s in analytical chemistry from Hebei University in China, and a bachelor’s in chemistry, also from Hebei University.

Which photosensitization processes does your lab study?

In my lab, I like to say we play with three things: light, oxygen, and photosensitizers. A photosensitizer is a light-absorbing compound. Usually, it’s an organic (carbon-containing) compound with color but sometimes without. When you shine light on the photosensitizer, it becomes excited. In the presence of oxygen, two basic processes can occur. In one process, which we call type I, the excited photosensitizer transfers electrons to oxygen to produce a reactive oxygen species called superoxide radicals. This process usually requires the presence of some electron-donating compounds. In another process, which we call type II, the excited photosensitizer transfers energy to oxygen to produce singlet oxygen, another reaction oxygen species.

How do these processes and the resulting products relate to cancer therapy and prevention?

Superoxide radicals can be good or bad. They play a role in biological metabolism but may be bad because they can cause biological damage, especially if they convert into other reactive species. For example, if a superoxide is in “Fenton-like conditions” (in the presence of hydrogen peroxide and iron) it will convert into extremely reactive hydroxyl radicals. Hydroxyl radicals are the most active type of radical, meaning they can interact with or kill anything.

That’s what we think may be happening with thiopurine prodrugs including azathioprine, 6-mercaptopurine, and 6-thioguanine (6-TG). A prodrug is an inactive precursor compound that, after administration to a patient, gets converted in the body into a pharmacologically active drug. These three thiopurine prodrugs—which are used to treat cancer as well as autoimmune disorders and inflammatory bowel disease—are metabolized to form 6-TG nucleotides. 6-TG is an analog to guanine, one of the four chemical bases found in DNA. In 6-TG, the oxygen atom is replaced with a sulfur atom.

Patients taking these thiopurine prodrugs over several years have an increased risk of developing cancer because the final metabolite (6-TG nucleotides) gets incorporated into their DNA.

Scientists think this side effect is related to the reactive oxygen species generated when the drugs absorb ultraviolet A (UVA) light. Most of the studies to date, including ours, have focused on the type II process (production of singlet oxygen). But we recently explored the type I process (production of superoxide radicals) with 6-TG and found the production of superoxide radicals increases 10-fold in the presence of gluthathione (GSH)—a very common compound in biological systems. 6-TG is ready to be oxidized by reactive oxygen species, while GSH can restore oxidized 6-TG to its original, active state. 6-TG acts as a continuing source of oxidants via type I photosensitization-superoxide oxidation-GSH reduction cycles.

Singlet oxygen is known to kill cancer cells. The energy-transfer process that produces singlet oxygen is what photodynamic therapy is based on. In photodynamic therapy, patients receive drugs that only work after they’ve been activated by certain wavelengths of light (photosensitizers), usually from a laser. A challenge in photodynamic therapy is that the singlet oxygen not only kills cancer cells but also healthy cells.

In our work, we’ve been using porphyrins as the photosensitizer to produce singlet oxygen. Porphyrins are colored organic compounds with a ring structure, and they absorb visible or near-infrared light. To try to improve the selectivity of photodynamic therapy, we leveraged one of the differences between cancerous and healthy cells: their pH. Cancer cells have an acidic (lower) pH than healthy cells, which have a slightly basic pH. We developed a photosensitizer that only works at lower pH. The mechanism is very simple. We attach the photosensitizer—positively charged porphyrin—to silica, or silicon dioxide (SiO2), nanoparticles. We use silica because its charge changes with pH. At higher pH, silica is negatively charged. When silica and porphyrin attach, the porphyrin gets deactivated for photosensitization. We encapsulate the porphyrin-silica in a phospholipid-based drug carrier called a nanocomposite liposome.

As we demonstrated with prostate cancer cells, when the liposome encapsulant is placed in a lower pH, the silica nanoparticles become positively charged. The two positive charges repel each other, causing the liposome to collapse and the nanoparticles and porphyrin to separate. The released porphyrin is now free to produce singlet oxygen. We found that singlet oxygen production is five times higher in lower pH environments.

What prompted you to submit a user proposal to the CFN?

I learned about the CFN the first year I joined Old Westbury from a colleague who had collaborated with them for many years. Old Westbury is not a research institution, so our experimental facilities are limited. I told colleagues what capabilities I needed for my research and they connected me with Eric Stach [former leader of the CFN Electron Microscopy Group]; Kim Kisslinger and Fernando Camino, both staff members in the CFN Electron Microscopy Group; and Mircea Cotlet, Mingxing Li, and Fang Lu of the CFN Soft and Bio Nanomaterials Group. Without the capabilities and staff expertise at the CFN, I don’t think my publications on the photosensitization research would have been possible. 

Which capabilities at the CFN have you been leveraging for your research?

It’s not only me who comes to the CFN; I also bring my students. We have been using a transmission electron microscope in the Electron Microscopy Facility and a dynamic light scattering instrument in the Advanced Optical Spectroscopy and Microscopy Facility to measure particle sizes. We want to know how the particle size changes when porphyrin is attached to silica. If the particle size is too big, it will be hard to distribute or deliver the particles as nanodrugs.

We have also been using a laser in the Advanced Optical Spectroscopy and Microscopy Facility to excite the photosensitizer and a near-infrared detector to measure the amount of singlet oxygen produced. Singlet oxygen generates an emission signal at 1270 nanometers, a wavelength of light in the near-infrared region. The quantity of singlet oxygen is related to how much photosensitizer you have and the intensity of the laser light. Normally, we put the photosensitizer in a cell—usually breast cancer cells—and vary these conditions to see their effect on cell death. I especially like the scanning confocal fluorescence lifetime imaging microscope, which is equipped with a camera that allows us to image the photosensitizer. In our lab at Old Westbury, we can measure absorption and fluorescence, but we don’t have the imaging capability.

What do you plan to work on next?

Right now, I have an active user proposal with the CFN, mainly to conduct laser experiments in Mircea’s lab to look at both processes—type I and type II—in a water solvent. Up until this point, we’ve been using a deuterated solvent (D2O, or “d-water”), where hydrogen atoms are replaced with deuterium atoms, to study the type I process. Researchers regularly use this solvent because singlet oxygen—which has a very weak emission signal—has a longer lifetime in it and thus is easier to monitor. However, you wouldn’t put a deuterated solvent in the human body; you would use regular water. Monitoring singlet oxygen in regular water requires a powerful laser and a highly sensitive detector.

You mentioned that your students also conduct research at the CFN. What role does hands-on research play in science, technology, engineering, and mathematics (STEM) education and how can user facilities like CFN help prepare students for future careers in STEM fields?

Since joining Old Westbury, I’ve been actively working with undergraduates in the research laboratory. Bringing research into the classroom is an important part of my teaching philosophy. From 2016 to 2020, I was the principal investigator (with co-principal investigators Judith Lloyd, Bright Emenke, and Duncan Quarless) of a National Science Foundation Improving Undergraduate STEM Education (NSF-IUSE) project. My colleagues and I used two teaching sequences to develop students’ argumentative abilities: a writing workshop divided into four modules for conceptual learning and weekly laboratory report writing for knowledge application. The four writing workshop modules guided students through the processes of identifying key components of an argument (evidence, justifications, and claims), selecting appropriate and inappropriate justifications, constructing strong justifications and conclusions, and analyzing experimental errors. We encouraged students to design their own experiments and engage in argumentative writing in chemistry laboratories.

Two of my former students, Eric Doucet and German Fuentes, did some of their research lab work at the CFN. Their time at the CFN was unlike any other experience they’ve ever had in college. Engaging in hands-on research at the CFN gave them a sense of what science is and how scientists work. The research results they got at the CFN were published and made them feel their work had real impact; it wasn’t just for the grade or degree. Several of my students have presented their research at annual Collegiate Science and Technology Entry Program (CSTEP) statewide conferences as well as other undergraduate research conferences, and some of them have won prizes. These achievements greatly benefited from the support of CFN staff and facilities.

How did you become interested in analytical chemistry and photochemistry?

My foundational interest in analytical chemistry began during my master’s studies. I started with inorganic analysis and then moved to electroanalytical chemistry, studying compounds that show activity when you apply an electrical potential. 

My first experience in photochemistry was as a postdoctoral fellow with Joseph Rabani at Hebrew University of Jerusalem in Israel. There, I applied pulse radiolysis, a method for rapidly generating reduced or oxidized chemical species and free radicals. Then, I studied singlet oxygen chemistry in Matthias Selke’s laboratory at California State University at Los Angeles. So, both of my postdocs were related to photochemistry. I consider myself an analytical chemist with a strong expertise in photochemistry.

I find this field very interesting and exciting. It involves not only doing experiments but also theoretical work to understand the data you collect. It’s easy to explain to students. Everyone already knows what light and oxygen are, so I only need to teach them what photosensitizers are and how they work. In the future, I hope to provide students with more opportunities to do research in my laboratory, where we perform basic research to understand the mechanisms of the primary processes for producing reactive oxygen species. If we can make these mechanisms clear, it will help the applications—improving the selectivity of photodynamic therapy toward cancer cells and reducing side effects of cancer drugs.

Interested in becoming a CFN user? Submit a proposal through the CFN Proposal Portal. The next deadline is May 31. If you have questions about using CFN facilities or partnering with CFN scientists, please contact CFN Assistant Director for Strategic Partnerships Priscilla Antunez at (631) 344-6186 or [email protected]

Brookhaven National Laboratory is supported by the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

Follow @BrookhavenLab on Twitter or find us on Facebook.

 

MEDIA CONTACT
Register for reporter access to contact details
Newswise: Capturing the Chemistry of Light-Activated Cancer Drugs with Ruomei Gao

Credit: Ruomei Gao

Caption: Ruomei Gao

Newswise: Capturing the Chemistry of Light-Activated Cancer Drugs with Ruomei Gao

Credit: Ruomei Gao

Caption: A schematic showing type I and II photosensitization processes. A photosensitizer at the ground state (0Photosensitizer) can be excited to its singlet state (1Photosensitizer) upon light irradiation (hν). This singlet state converts to a lower-energy triplet state (3Photosensitizer) via a nonradiative process called intersystem crossing (ISC). In the presence of oxygen in its stable triplet form (3O2), which is the oxygen found in air, the excited triplet photosensitizer can transfer electrons to oxygen to produce superoxide radicals (O2−) or transfer energy to oxygen to produce singlet oxygen (1O2).

Newswise: Capturing the Chemistry of Light-Activated Cancer Drugs with Ruomei Gao

Credit: Research published in Physical Chemistry Chemical Physics 9 (2021).

Caption: A schematic showing the type I photosensitization of the drug 6-TG induced by ultraviolet A (UVA) light in the presence (highlighted in peach) and absence of gluthathione (GSH). The gray box shows how superoxide radicals convert into extremely reactive hydroxyl radicals (•OH) under "Fenton-like conditions." Hydroxyl radicals have an even higher risk of causing biological damage than that induced by the well-studied type II reaction.

Newswise: Capturing the Chemistry of Light-Activated Cancer Drugs with Ruomei Gao

Credit:

Caption: An illustration showing the process for creating the silica-porphyrin (TTMAPP) liposomes for targeted drug delivery via photodynamic therapy.

Newswise: Capturing the Chemistry of Light-Activated Cancer Drugs with Ruomei Gao

Credit:

Caption: CFN materials scientist Mircea Cotlet—Gao's current host—gave a presentation to some of Gao's students during a tour of the CFN in 2017.

Newswise: Capturing the Chemistry of Light-Activated Cancer Drugs with Ruomei Gao

Credit: Research published in RSC Advances, 10, 17094 (2020).

Caption: An illustration showing representative fluorescence images monitored at 560 nanometers (nm) upon irradiation (410 nm) of porphyrin in the dry layers of liposomes prepared at pH 8.6 (left) and pH 5.4 (right). The images were captured with the scanning confocal fluorescence lifetime imaging microscope at the CFN. The brighter green at pH 5.4 (compared to the darker green at pH 8.6) indicates more free porphyrin molecules have been released for singlet oxygen production, thus leading to more cancer cell death.

Newswise: Capturing the Chemistry of Light-Activated Cancer Drugs with Ruomei Gao

Credit:

Caption: Gao with undergraduate students Eric Doucet (left) and German Fuentes (right), who presented their research on the pH-triggered release of porphyrin for photodynamic therapy during the Department of Energy Triennial Review at the CFN on August 23, 2016. On April 8, 2017, Fuentes won first place in the New York State Collegiate Science and Technology Entry Program (CSTEP) Chemistry I Poster Research Competition and the Dr. Henry Teoh Award for Outstanding Research Poster.

Newswise: Capturing the Chemistry of Light-Activated Cancer Drugs with Ruomei Gao

Credit:

Caption: On April 14, 2018, SUNY Old Westbury undergraduate Nelson Euceda, mentored by Gao, took first place in the Chemistry/Biochemistry Poster Research Competition of the New York State Collegiate Science and Technology Entry Program (CSTEP) for the project, "UVA-Induced 6-Thioguanine Superoxide Radical Production Enhanced by Gluthathione."

DOE-Explains
X
X
X


Filters close
Newswise: Argonne’s turning 75: Join the celebration!
Released: 21-Jun-2021 10:05 AM EDT
Argonne’s turning 75: Join the celebration!
Argonne National Laboratory

Three virtual public events during the week of June 28 will mark Argonne’s 75th anniversary. Events will spotlight U.S. Department of Energy national user facilities; the next 75 years; the road to decarbonization; and a lighthearted look at the lab.

Newswise: Alex Harris Named Energy Sciences Director at Brookhaven Lab
Released: 21-Jun-2021 8:05 AM EDT
Alex Harris Named Energy Sciences Director at Brookhaven Lab
Brookhaven National Laboratory

UPTON, NY—The U.S. Department of Energy’s (DOE) Brookhaven National Laboratory has named Alex Harris as Director of the Lab’s Energy Sciences Department, effective May 1, 2021. In his new position, Harris will manage several divisions of the Laboratory, including the Center for Functional Nanomaterials, the Chemistry Division, and the Condensed Matter Physics and Materials Science Division.

Newswise: Accelerating the Speed of Science
Released: 18-Jun-2021 2:35 PM EDT
Accelerating the Speed of Science
Pacific Northwest National Laboratory

Researchers will be able to design their own computer accelerators for faster analysis of large datasets

16-Jun-2021 10:05 AM EDT
Argonne and Oak Ridge National Laboratories Award Codeplay Software to Further Strengthen SYCL™ Support Extending the Open Standard Software for AMD GPUs
Argonne National Laboratory

Argonne National Laboratory (Argonne) in collaboration with Oak Ridge National Laboratory (ORNL), has awarded Codeplay a contract implementing the oneAPI DPC++ compiler, an implementation of the SYCL open standard software, to support AMD GPU-based high-performance compute (HPC) supercomputers.

Newswise: An Ally for Alloys
Released: 16-Jun-2021 6:20 PM EDT
An Ally for Alloys
Pacific Northwest National Laboratory

Machine learning techniques are accelerating the development of stronger alloys for power plants, which will yield efficiency, cost, and decarbonization benefits.

Released: 16-Jun-2021 1:50 PM EDT
Department of Energy Announces $4 Million for Isotope R&D
Department of Energy, Office of Science

Today, the U.S. Department of Energy (DOE) announced $4 million in funding for 10 awards across 5 efforts to advance R&D for isotope production. This funding is part of a key federal program that produces critical isotopes otherwise unavailable or in short supply for U.S. science, medicine, and industry.

Newswise: A Cousin of Table Salt Could Make Energy Storage Faster and Safer
Released: 16-Jun-2021 10:10 AM EDT
A Cousin of Table Salt Could Make Energy Storage Faster and Safer
Department of Energy, Office of Science

Scientists have found that lithium vanadium oxide can rapidly charge and discharge energy. The material has a structure similar to table salt but with a more random atomic arrangement. It charges and discharges without growing lithium metal “dendrites” that can cause dangerous short circuits. This could lead to safer, faster-charging batteries for electric vehicles.

Newswise: Internships Put Futures in Flight
Released: 15-Jun-2021 6:05 PM EDT
Internships Put Futures in Flight
Pacific Northwest National Laboratory

PNNL intern Ki Ahn spent this past year as an undergraduate at PNNL gaining hands-on research experience in clean energy storage technologies for vehicles and aviation. Ahn is enrolling in Stanford University this fall to finish his bachelor’s degree. With plans to major in mechanical engineering or computer science, he wants to explore how future aircraft technologies can be designed to reduce harmful environmental effects.

Newswise: Researchers Poised To Deliver Key Scientific Findings In The Fast Lane
Released: 15-Jun-2021 4:25 PM EDT
Researchers Poised To Deliver Key Scientific Findings In The Fast Lane
Princeton Plasma Physics Laboratory

PPPL forges ahead with development of streaming media to provide rapid analysis of key findings of remote fusion experiments.

View More
Newswise: Argonne’s turning 75: Join the celebration!
Released: 21-Jun-2021 10:05 AM EDT
Argonne’s turning 75: Join the celebration!
Argonne National Laboratory

Three virtual public events during the week of June 28 will mark Argonne’s 75th anniversary. Events will spotlight U.S. Department of Energy national user facilities; the next 75 years; the road to decarbonization; and a lighthearted look at the lab.

Newswise: Alex Harris Named Energy Sciences Director at Brookhaven Lab
Released: 21-Jun-2021 8:05 AM EDT
Alex Harris Named Energy Sciences Director at Brookhaven Lab
Brookhaven National Laboratory

UPTON, NY—The U.S. Department of Energy’s (DOE) Brookhaven National Laboratory has named Alex Harris as Director of the Lab’s Energy Sciences Department, effective May 1, 2021. In his new position, Harris will manage several divisions of the Laboratory, including the Center for Functional Nanomaterials, the Chemistry Division, and the Condensed Matter Physics and Materials Science Division.

Newswise: Accelerating the Speed of Science
Released: 18-Jun-2021 2:35 PM EDT
Accelerating the Speed of Science
Pacific Northwest National Laboratory

Researchers will be able to design their own computer accelerators for faster analysis of large datasets

16-Jun-2021 10:05 AM EDT
Argonne and Oak Ridge National Laboratories Award Codeplay Software to Further Strengthen SYCL™ Support Extending the Open Standard Software for AMD GPUs
Argonne National Laboratory

Argonne National Laboratory (Argonne) in collaboration with Oak Ridge National Laboratory (ORNL), has awarded Codeplay a contract implementing the oneAPI DPC++ compiler, an implementation of the SYCL open standard software, to support AMD GPU-based high-performance compute (HPC) supercomputers.

Newswise: An Ally for Alloys
Released: 16-Jun-2021 6:20 PM EDT
An Ally for Alloys
Pacific Northwest National Laboratory

Machine learning techniques are accelerating the development of stronger alloys for power plants, which will yield efficiency, cost, and decarbonization benefits.

Released: 16-Jun-2021 1:50 PM EDT
Department of Energy Announces $4 Million for Isotope R&D
Department of Energy, Office of Science

Today, the U.S. Department of Energy (DOE) announced $4 million in funding for 10 awards across 5 efforts to advance R&D for isotope production. This funding is part of a key federal program that produces critical isotopes otherwise unavailable or in short supply for U.S. science, medicine, and industry.

Newswise: A Cousin of Table Salt Could Make Energy Storage Faster and Safer
Released: 16-Jun-2021 10:10 AM EDT
A Cousin of Table Salt Could Make Energy Storage Faster and Safer
Department of Energy, Office of Science

Scientists have found that lithium vanadium oxide can rapidly charge and discharge energy. The material has a structure similar to table salt but with a more random atomic arrangement. It charges and discharges without growing lithium metal “dendrites” that can cause dangerous short circuits. This could lead to safer, faster-charging batteries for electric vehicles.

Newswise: Internships Put Futures in Flight
Released: 15-Jun-2021 6:05 PM EDT
Internships Put Futures in Flight
Pacific Northwest National Laboratory

PNNL intern Ki Ahn spent this past year as an undergraduate at PNNL gaining hands-on research experience in clean energy storage technologies for vehicles and aviation. Ahn is enrolling in Stanford University this fall to finish his bachelor’s degree. With plans to major in mechanical engineering or computer science, he wants to explore how future aircraft technologies can be designed to reduce harmful environmental effects.

Newswise: Researchers Poised To Deliver Key Scientific Findings In The Fast Lane
Released: 15-Jun-2021 4:25 PM EDT
Researchers Poised To Deliver Key Scientific Findings In The Fast Lane
Princeton Plasma Physics Laboratory

PPPL forges ahead with development of streaming media to provide rapid analysis of key findings of remote fusion experiments.

View More
Newswise: Argonne’s turning 75: Join the celebration!
Released: 21-Jun-2021 10:05 AM EDT
Argonne’s turning 75: Join the celebration!
Argonne National Laboratory

Three virtual public events during the week of June 28 will mark Argonne’s 75th anniversary. Events will spotlight U.S. Department of Energy national user facilities; the next 75 years; the road to decarbonization; and a lighthearted look at the lab.

Newswise: Alex Harris Named Energy Sciences Director at Brookhaven Lab
Released: 21-Jun-2021 8:05 AM EDT
Alex Harris Named Energy Sciences Director at Brookhaven Lab
Brookhaven National Laboratory

UPTON, NY—The U.S. Department of Energy’s (DOE) Brookhaven National Laboratory has named Alex Harris as Director of the Lab’s Energy Sciences Department, effective May 1, 2021. In his new position, Harris will manage several divisions of the Laboratory, including the Center for Functional Nanomaterials, the Chemistry Division, and the Condensed Matter Physics and Materials Science Division.

Newswise: Accelerating the Speed of Science
Released: 18-Jun-2021 2:35 PM EDT
Accelerating the Speed of Science
Pacific Northwest National Laboratory

Researchers will be able to design their own computer accelerators for faster analysis of large datasets

16-Jun-2021 10:05 AM EDT
Argonne and Oak Ridge National Laboratories Award Codeplay Software to Further Strengthen SYCL™ Support Extending the Open Standard Software for AMD GPUs
Argonne National Laboratory

Argonne National Laboratory (Argonne) in collaboration with Oak Ridge National Laboratory (ORNL), has awarded Codeplay a contract implementing the oneAPI DPC++ compiler, an implementation of the SYCL open standard software, to support AMD GPU-based high-performance compute (HPC) supercomputers.

Newswise: An Ally for Alloys
Released: 16-Jun-2021 6:20 PM EDT
An Ally for Alloys
Pacific Northwest National Laboratory

Machine learning techniques are accelerating the development of stronger alloys for power plants, which will yield efficiency, cost, and decarbonization benefits.

Released: 16-Jun-2021 1:50 PM EDT
Department of Energy Announces $4 Million for Isotope R&D
Department of Energy, Office of Science

Today, the U.S. Department of Energy (DOE) announced $4 million in funding for 10 awards across 5 efforts to advance R&D for isotope production. This funding is part of a key federal program that produces critical isotopes otherwise unavailable or in short supply for U.S. science, medicine, and industry.

Newswise: A Cousin of Table Salt Could Make Energy Storage Faster and Safer
Released: 16-Jun-2021 10:10 AM EDT
A Cousin of Table Salt Could Make Energy Storage Faster and Safer
Department of Energy, Office of Science

Scientists have found that lithium vanadium oxide can rapidly charge and discharge energy. The material has a structure similar to table salt but with a more random atomic arrangement. It charges and discharges without growing lithium metal “dendrites” that can cause dangerous short circuits. This could lead to safer, faster-charging batteries for electric vehicles.

Newswise: Internships Put Futures in Flight
Released: 15-Jun-2021 6:05 PM EDT
Internships Put Futures in Flight
Pacific Northwest National Laboratory

PNNL intern Ki Ahn spent this past year as an undergraduate at PNNL gaining hands-on research experience in clean energy storage technologies for vehicles and aviation. Ahn is enrolling in Stanford University this fall to finish his bachelor’s degree. With plans to major in mechanical engineering or computer science, he wants to explore how future aircraft technologies can be designed to reduce harmful environmental effects.

Newswise: Researchers Poised To Deliver Key Scientific Findings In The Fast Lane
Released: 15-Jun-2021 4:25 PM EDT
Researchers Poised To Deliver Key Scientific Findings In The Fast Lane
Princeton Plasma Physics Laboratory

PPPL forges ahead with development of streaming media to provide rapid analysis of key findings of remote fusion experiments.

View More

Spotlight

ORNL partners on science kits for STEM schools
Mon, 17 May 2021 17:05:21 EST

ORNL partners on science kits for STEM schools

Oak Ridge National Laboratory

Graduate students gather virtually for summer school at PPPL
Mon, 05 Oct 2020 15:45:57 EST

Graduate students gather virtually for summer school at PPPL

Princeton Plasma Physics Laboratory

Virtual internships for physics students present challenges, build community
Tue, 15 Sep 2020 15:35:30 EST

Virtual internships for physics students present challenges, build community

Princeton Plasma Physics Laboratory

Blocking the COVID-19 Virus's Exit Strategy
Mon, 31 Aug 2020 15:05:12 EST

Blocking the COVID-19 Virus's Exit Strategy

Brookhaven National Laboratory

Summer Students Tackle COVID-19
Mon, 31 Aug 2020 14:35:39 EST

Summer Students Tackle COVID-19

Brookhaven National Laboratory

Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
Fri, 17 Apr 2020 16:25:17 EST

Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

Princeton Plasma Physics Laboratory

Barbara Garcia: A first-generation college student spends summer doing research at PPPL
Tue, 24 Sep 2019 15:05:51 EST

Barbara Garcia: A first-generation college student spends summer doing research at PPPL

Princeton Plasma Physics Laboratory

Argonne organization’s scholarship fund blazes STEM pathway
Tue, 17 Sep 2019 16:05:11 EST

Argonne organization’s scholarship fund blazes STEM pathway

Argonne National Laboratory

Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
Fri, 13 Sep 2019 10:30:34 EST

Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

Brookhaven National Laboratory

Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
Fri, 30 Aug 2019 09:00:26 EST

Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

Brookhaven National Laboratory

PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
Thu, 01 Aug 2019 11:05:23 EST

PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

Princeton Plasma Physics Laboratory

Creating a diverse pipeline
Fri, 19 Jul 2019 12:05:33 EST

Creating a diverse pipeline

Princeton Plasma Physics Laboratory

JSA Awards Graduate Fellowships for Research at Jefferson Lab
Mon, 08 Jul 2019 14:00:16 EST

JSA Awards Graduate Fellowships for Research at Jefferson Lab

Thomas Jefferson National Accelerator Facility

ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
Mon, 20 May 2019 11:05:42 EST

ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

Argonne National Laboratory

Integrating Scientific Computing into Science Curricula
Mon, 13 May 2019 10:05:46 EST

Integrating Scientific Computing into Science Curricula

Brookhaven National Laboratory

Students from Minnesota and Massachusetts Win DOE’s 29th National Science Bowl®
Mon, 29 Apr 2019 13:05:21 EST

Students from Minnesota and Massachusetts Win DOE’s 29th National Science Bowl®

Department of Energy, Office of Science

Young Women’s Conference in STEM seeks to change the statistics one girl at a time
Thu, 28 Mar 2019 14:05:07 EST

Young Women’s Conference in STEM seeks to change the statistics one girl at a time

Princeton Plasma Physics Laboratory

Students team with Argonne scientists and engineers to learn about STEM careers
Tue, 12 Mar 2019 16:05:09 EST

Students team with Argonne scientists and engineers to learn about STEM careers

Argonne National Laboratory

Lynbrook High wins 2019 SLAC Regional Science Bowl competition
Wed, 13 Feb 2019 14:05:35 EST

Lynbrook High wins 2019 SLAC Regional Science Bowl competition

SLAC National Accelerator Laboratory

Equipping the next generation for a technological revolution
Thu, 24 Jan 2019 13:05:29 EST

Equipping the next generation for a technological revolution

Argonne National Laboratory

Chemistry intern inspired by Argonne’s real-world science
Fri, 18 Jan 2019 17:05:40 EST

Chemistry intern inspired by Argonne’s real-world science

Argonne National Laboratory

Chasing a supernova
Fri, 18 Jan 2019 16:05:20 EST

Chasing a supernova

Argonne National Laboratory

Argonne intern streamlines the beamline
Tue, 08 Jan 2019 14:05:01 EST

Argonne intern streamlines the beamline

Argonne National Laboratory

Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
Thu, 11 Oct 2018 15:00:00 EST

Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

Rensselaer Polytechnic Institute (RPI)

Innovating Our Energy Future
Wed, 03 Oct 2018 18:05:41 EST

Innovating Our Energy Future

Oregon State University, College of Engineering

Physics graduate student takes her thesis research to a Department of Energy national lab
Tue, 02 Oct 2018 14:05:36 EST

Physics graduate student takes her thesis research to a Department of Energy national lab

University of Alabama at Birmingham

“Model” students enjoy Argonne campus life
Fri, 21 Sep 2018 12:05:48 EST

“Model” students enjoy Argonne campus life

Argonne National Laboratory

Writing Code for a More Skilled and Diverse STEM Workforce
Thu, 06 Sep 2018 12:05:58 EST

Writing Code for a More Skilled and Diverse STEM Workforce

Brookhaven National Laboratory

New graduate student summer school launches at Princeton Plasma Physics Laboratory
Tue, 04 Sep 2018 10:30:12 EST

New graduate student summer school launches at Princeton Plasma Physics Laboratory

Princeton Plasma Physics Laboratory

The Gridlock State
Fri, 31 Aug 2018 17:05:07 EST

The Gridlock State

California State University (CSU) Chancellor's Office

Meet Jasmine Hatcher and Trishelle Copeland-Johnson
Fri, 31 Aug 2018 13:05:55 EST

Meet Jasmine Hatcher and Trishelle Copeland-Johnson

Brookhaven National Laboratory

Argonne hosts Modeling, Experimentation and Validation Summer School
Fri, 24 Aug 2018 10:05:27 EST

Argonne hosts Modeling, Experimentation and Validation Summer School

Argonne National Laboratory

Students affected by Hurricane Maria bring their research to SLAC
Wed, 22 Aug 2018 12:05:42 EST

Students affected by Hurricane Maria bring their research to SLAC

SLAC National Accelerator Laboratory

Brookhaven Lab Pays Tribute to 2018 Summer Interns
Wed, 22 Aug 2018 09:05:24 EST

Brookhaven Lab Pays Tribute to 2018 Summer Interns

Brookhaven National Laboratory

Changing How Buildings Are Made
Mon, 20 Aug 2018 11:05:19 EST

Changing How Buildings Are Made

Washington University in St. Louis

CSUMB Selected to Host Architecture at Zero Competition in 2019
Thu, 16 Aug 2018 11:05:02 EST

CSUMB Selected to Host Architecture at Zero Competition in 2019

California State University, Monterey Bay

Department of Energy Invests $64 Million in Advanced Nuclear Technology
Fri, 20 Jul 2018 14:00:00 EST

Department of Energy Invests $64 Million in Advanced Nuclear Technology

Rensselaer Polytechnic Institute (RPI)

Professor Miao Yu Named the Priti and Mukesh Chatter ’82 Career Development Professor
Thu, 19 Jul 2018 16:00:00 EST

Professor Miao Yu Named the Priti and Mukesh Chatter ’82 Career Development Professor

Rensselaer Polytechnic Institute (RPI)

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
Tue, 03 Jul 2018 10:05:10 EST

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

Brookhaven National Laboratory

Argonne welcomes <em>The Martian</em> author Andy Weir
Fri, 29 Jun 2018 17:05:17 EST

Argonne welcomes The Martian author Andy Weir

Argonne National Laboratory

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
Mon, 18 Jun 2018 08:55:34 EST

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

Illinois Mathematics and Science Academy (IMSA)

Showing results

0-6 Of 50
close
2.28458