Abstract: The RETINOBLASTOMA-RELATED (RBR) proteins play a central role coordinating cell division, cell differentiation and cell survival within an environmental and developmental context. These roles reflect RBR ability to engage in multiple protein-protein interactions (PPIs), which are regulated by multi-site phosphorylation. However the functional outcomes of RBR phosphorylation in multicellular organisms remain largely unexplored. Here we test the hypothesis that phosphorylation allows diversification of RBR functions in multicellular context. Using a representative collection of transgenic loss- and gain of function point mutations in RBR phospho-sites, we analysed their complementation capacity in Arabidopsis thaliana root meristems. While the number of mutated residues often correlated to the phenotypic strength of RBR phospho-variants, phospho-sites contributed differentially to distinct phenotypes. For example, the pocket-domain has a greater influence on meristematic cell proliferation, whereas the C-terminal region associates to stem cell maintenance. We found combinatorial effects between the T406 phopspho-site with others in different protein domains. Moreover, a phospho-mimetic and a phospho-defective variant, both promoting cell death, indicate that RBR controls similar cell fate choices by distinct mechanisms. Thus, additivity and specificity of RBR phospho-sites fine tune RBR activity across its multiple roles. Interestingly, a mutation disrupting RBR interactions with the LXCXE motif suppresses dominant phospho-defective RBR phenotypes. By probing protein-protein interactions of RBR variants, we found that LXCXE-containing members of the DREAM complex constitute an important component of phosphorylation-regulated RBR function, but also that RBR participates in stress or environmental responses independently of its phosphorylation state. We conclude that developmental-related, but not stress- or environmental-related functions of RBR are defined and separable by a combinatorial phosphorylation code.

Other Link: 10.1101/2021.12.20.472892 Other Link: Publisher Website Other Link: Download PDF Other Link: Google Scholar