Malaria discovery could expedite antiviral treatment for COVID-19

New research into malaria suggests targeting enzymes from the human host, rather than from the pathogen itself, could offer effective treatment for a range of infectious diseases, including COVID-19.

Newswise — The study, conducted by an international team and led by RMIT University's Professor Christian Doerig, outlines a strategy that could save years of drug discovery research and millions of dollars in drug development by repurposing existing treatments designed for other diseases such as cancer.

The approach shows so much promise it has received government funding for its potential application in the fight against COVID-19.

The study, published in Nature Communications, demonstrated that the parasites that cause malaria are heavily dependent on enzymes in red blood cells where the parasites hide and proliferate.

It also revealed that drugs developed for cancer, and which inactivate these human enzymes, known as protein kinases, are highly effective in killing the parasite and represent an alternative to drugs that target the parasite itself.

Lead author, RMIT's Dr Jack Adderley, said the analysis revealed which of the host cell enzymes were activated during infection, revealing novel points of reliance of the parasite on its human host.

"This approach has the potential to considerably reduce the cost and accelerate the deployment of new and urgently needed antimalarials," he said.

"These host enzymes are in many instances the same as those activated in cancer cells, so we can now jump on the back of existing cancer drug discovery and look to repurpose a drug that is already available or close to completion of the drug development process."

As well as enabling the repurposing of drugs, the approach is likely to reduce the emergence of drug resistance, as the pathogen cannot escape by simply mutating the target of the drug, as is the case for most currently available antimalarials.

Doerig, Associate Dean for the Biomedical Sciences Cluster at RMIT and senior author of the paper, said the findings were exciting, as drug resistance is one of the biggest challenges in modern healthcare, not only in the case of malaria, but with most infectious agents, including a large number of highly pathogenic bacterial species.

"We are at risk of returning to the pre-antibiotic era if we don't solve this resistance problem, which constitutes a clear and present danger for global public health. We need innovative ways to address this issue," he said.

"By targeting the host and not the pathogen itself, we remove the possibility for the pathogen to rapidly become resistant by mutating the target of the drug, as the target is made by the human host, not the pathogen."

Doerig's team will now collaborate with the Peter Doherty Institute for Infection and Immunity (Doherty Institute) to investigate potential COVID-19 treatments using this approach, supported by funding from the Victorian Medical Research Acceleration Fund in partnership with the Bio Capital Impact Fund (BCIF).

Co-investigator on the grant, Royal Melbourne Hospital's Dr Julian Druce, from the Victorian Infectious Diseases Reference Laboratory (VIDRL) at the Doherty Institute, was part of the team that were first to grow and share the virus that causes COVID-19, and said the research was an important contribution to efforts to defeat the pandemic.

Royal Melbourne Hospital's Professor Peter Revill, Senior Medical Scientist at the Doherty Institute and a leader on Hepatitis B research, said the approach developed by the RMIT team was truly exciting.

"This has proven successful for other human pathogens including malaria and Hepatitis C virus, and there are now very real prospects to use it to discover novel drug targets for Hepatitis B and COVID-19," he said.

###

The paper is the outcome of an RMIT-led international collaboration with researchers from Monash University in Melbourne, Dr Danny Wilson (University of Adelaide's Malaria Biology Laboratory Head and Burnet Institute), Dr Jean-Philippe Semblat (from French Government agency Inserm, Paris) and Prof Oliver Billker (Umeå University, Sweden and Sanger Centre, UK).

The paper, 'Analysis of erythrocyte signalling pathways during Plasmodium falciparum infection identifies targets for host-directed antimalarial intervention' and is published in Nature Communications (DOI:10.1038/s41467-020-17829-7).

SEE ORIGINAL STUDY




Filters close

Showing results

110 of 5391
Released: 13-Apr-2021 4:05 PM EDT
B.1.1.7. variant more transmissible, does not increase severity, Lancet studies suggest
Lancet

An observational study of patients in London hospitals suggests that the B.1.1.7. variant is not associated with more severe illness and death, but appears to lead to higher viral load, consistent with emerging evidence that this lineage is more transmissible than the original COVID-19 strain.

Newswise: Plasma device designed for consumers can quickly disinfect surfaces
Released: 13-Apr-2021 3:05 PM EDT
Plasma device designed for consumers can quickly disinfect surfaces
Princeton Plasma Physics Laboratory

The COVID-19 pandemic has cast a harsh light on the urgent need for quick and easy techniques to sanitize and disinfect everyday high-touch objects such as doorknobs, pens, pencils, and personal protective gear worn to keep infections from spreading.

Newswise: Narratives Can Help Science Counter Misinformation on Vaccines
Released: 13-Apr-2021 12:50 PM EDT
Narratives Can Help Science Counter Misinformation on Vaccines
Iowa State University

Narratives are a powerful tool that can help explain complex issues, but they can also serve as sources of misinformation, which presents a challenge as public health agencies work to educate people about COVID-19 vaccine.

Released: 13-Apr-2021 10:05 AM EDT
Puerto Rico, Coronavirus Among Top Latino Twitter Topics During 2020 Election
George Washington University

Latinos discussed Puerto Rico and the COVID-19 pandemic more than any other subject on Twitter in the run-up to the 2020 election, according to researchers at the George Washington University. Spanish-language tweets mentioning “freedom” and “socialism” were also popular, while topics such as Obamacare and immigration did not gain much traction.

Newswise: Americans continue struggling for a good night’s sleep during the pandemic
Released: 13-Apr-2021 9:00 AM EDT
Americans continue struggling for a good night’s sleep during the pandemic
American Academy of Sleep Medicine (AASM)

The coronavirus pandemic continues to have a negative impact on our sleep, according to new findings from the American Academy of Sleep Medicine.

Newswise:Video Embedded the-science-behind-the-shot-biotech-tools-developed-at-brookhaven-lab-fundamental-to-making-covid-19-vaccines
VIDEO
Released: 13-Apr-2021 8:05 AM EDT
The Science Behind the Shot: Biotech Tools Developed at Brookhaven Lab Fundamental to Making COVID-19 Vaccines
Brookhaven National Laboratory

You’ve probably heard that the first two vaccines approved for battling COVID-19 in the United States use a relatively new approach—injections of simple packets containing mRNA, a genetic material that instructs our cells to make coronavirus spike proteins. But the technology for generating sufficient amounts of those mRNA packets dates back to the 1980s, when F. William Studier, then a senior biophysicist at the U.S. Department of Energy’s Brookhaven National Laboratory, developed a way to harness the molecular machinery of a very different virus.

Newswise: UCLA Fielding School of Public Health Scholar’s Work on Fatigue and Health Published
Released: 13-Apr-2021 4:05 AM EDT
UCLA Fielding School of Public Health Scholar’s Work on Fatigue and Health Published
UCLA Fielding School of Public Health

A landmark work has been published examining fatigue as a hugely important factor in human health and extremely relevant to those with “long-haul” COVID-19 symptoms.

access_time Embargo lifts in 2 days
Embargo will expire: 14-Apr-2021 2:00 PM EDT Released to reporters: 12-Apr-2021 4:05 PM EDT

A reporter's PressPass is required to access this story until the embargo expires on 14-Apr-2021 2:00 PM EDT The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.


Showing results

110 of 5391

close
2.40906