Saliva can be more effective than nasopharyngeal swabs for COVID-19 testing

Addition of a simple processing step to saliva samples before testing may improve COVID-19 detection rate, eliminate the challenges of nasopharyngeal testing, and facilitate mass surveillance, researchers report in The Journal of Molecular Diagnostics
11-Jun-2021 2:10 PM EDT, by Elsevier

Newswise — Philadelphia, June 10, 2021 - The collection of nasopharyngeal swab (NPS) samples for COVID-19 diagnostic testing poses challenges including exposure risk to healthcare workers and supply chain constraints. Saliva samples are easier to collect but can be mixed with mucus or blood, and some studies have found they produce less accurate results. A team of researchers has found that an innovative protocol that processes saliva samples with a bead mill homogenizer before real-time PCR (RT-PCR) testing results in higher sensitivity compared to NPS samples. Their protocol appears in The Journal of Molecular Diagnostics, published by Elsevier.

"Saliva as a sample type for COVID-19 testing was a game changer in our fight against the pandemic. It helped us with increased compliance from the population for testing along with decreased exposure risk to the healthcare workers during the collection process," said lead investigator Ravindra Kolhe, MD, PhD, Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA.

The study included samples from a hospital and nursing home as well as from a drive-through testing site. In the first phase (protocol U), 240 matched NPS and saliva sample pairs were tested prospectively for SARS-CoV-2 RNA by RT-PCR. In the second phase of the study (SalivaAll), 189 matched pairs, including 85 that had been previously evaluated with protocol U, were processed in an Omni bead mill homogenizer before RT-PCR testing. An additional study was conducted with samples with both protocol U and SalivaAll to determine if bead homogenization would affect the clinical sensitivity in NPS samples. Finally, a five-sample pooling strategy was evaluated. Twenty positive pools containing one positive and four negative samples were processed with the Omni bead homogenizer before pooling for SARS-CoV-2 RT-PCR testing and compared to controls.

In Phase I, 28.3 percent of samples tested positive for SARS-CoV-2 from either NPS, saliva, or both. The detection rate was lower in saliva compared to NPS (50.0 percent vs. 89.7 percent). In Phase II, 50.2 percent of samples tested positive for SARS-CoV-2 from either saliva, NPS, or both. The detection rate was higher in saliva compared to NPS samples (97.8 percent vs. 78.9 percent). Of the 85 saliva samples tested with both protocols, the detection rate was 100 percent for samples tested with SalivaAll and 36.7 percent with protocol U.

Dr. Kolhe observed that the underlying issues associated with lower sensitivity of saliva to RT-PCR testing could be attributed to the gel-like consistency of saliva samples, which made it difficult to accurately pipet samples into extraction plates for nucleic acid extraction. Adding the homogenization step rendered the saliva samples to uniform viscosity and consistency, making it easier to pipet for the downstream assay.

Dr. Kolhe and his colleagues also successfully validated saliva samples in the five-sample pooling strategy. The pooled testing results demonstrated a positive agreement of 95 percent, and the negative agreement was found to be 100 percent. Pooled testing will be critical for SARS-CoV-2 mass surveillance as schools reopen, travel and tourism resume, and people return to offices.

"Monitoring SARS-CoV-2 will remain a public health need," Dr. Kolhe said. "The use of a non-invasive collection method and easily accessible sample such as saliva will enhance screening and surveillance activities and bypass the need for sterile swabs, expensive transport media, and exposure risk, and even the need for skilled healthcare workers for sample collection."

###

SEE ORIGINAL STUDY



Filters close

Showing results

110 of 5872
Released: 24-Jun-2021 4:55 PM EDT
Virus that causes COVID-19 can find alternate route to infect cells
Washington University in St. Louis

The virus that causes COVID-19 normally gets inside cells by attaching to a protein called ACE2. Researchers at Washington University School of Medicine in St. Louis have found that a single mutation confers the ability to enter cells through another route, which may threaten the effectiveness of COVID-19 vaccines and therapeutics designed to block the standard route of entry.

Newswise: Is it a Virus or Bacteria? New Tech Rapidly Tests for COVID-19 and More
Released: 24-Jun-2021 3:05 PM EDT
Is it a Virus or Bacteria? New Tech Rapidly Tests for COVID-19 and More
Homeland Security's Science And Technology Directorate

S&T is preparing for future outbreaks/pandemics by investing in a new tech that can quickly discriminate between bacterial and viral infections so that the U.S. can triage patients and plan a response without delay.

Released: 24-Jun-2021 12:30 PM EDT
A tecnologia de IA e ECG pode descartar rapidamente a infecção por COVID-19, concluiu o estudo da Mayo Clinic
Mayo Clinic

A inteligência artificial (IA) pode oferecer uma maneira de determinar com precisão se uma pessoa não está infectada com a COVID-19. Um estudo retrospectivo internacional descobriu que a infecção pelo SARS-CoV-2, o vírus que causa a COVID-19, cria mudanças elétricas sutis no coração. Um eletrocardiograma (ECG) habilitado com IA pode detectar essas alterações e, potencialmente, ser usado como um teste de triagem rápido e confiável para descartar a infecção por COVID-19.

Released: 24-Jun-2021 12:10 PM EDT
妙佑医疗国际(Mayo Clinic)的研究发现,AI赋能的心电图技术有可能迅速排除COVID-19感染
Mayo Clinic

AI (人工智能)有可能提供准确判断一个人未感染COVID-19(2019冠状病毒病)的方法。一项国际回顾性研究发现,如果感染了导致COVID-19的SARS-CoV-2病毒,患者的心脏会产生微妙的电学变化。AI赋能的心电图(EKG)可以检测到这些变化,并有望被用于进行快速、可靠的COVID-19筛查检测,以排除COVID-19感染。

Newswise: 200421_Felgner_3205_sz-2-768x496.jpg
Released: 24-Jun-2021 11:50 AM EDT
UCI Professor Wins Spain’s Prestigious Princess of Asturias Award for Scientific Research
University of California, Irvine

Irvine, Calif., June 24, 2021 — Philip Felgner, Ph.D., professor in residence of physiology & biophysics at the University of California, Irvine, is one of seven scholars worldwide to win Spain’s prestigious Princess of Asturias Award for Technical and Scientific Research in recognition of their contributions to designing COVID-19 vaccines.

Released: 24-Jun-2021 11:00 AM EDT
New protein engineering method could accelerate the discovery of COVID-19 therapeutics
University of Michigan

Discovering and engineering nanobodies with properties suitable for treating human diseases ranging from cancer to COVID-19 is a time-consuming, laborious process.

Newswise: Decoding humans’ survival from coronaviruses
Released: 24-Jun-2021 11:00 AM EDT
Decoding humans’ survival from coronaviruses
University of Adelaide

An international team of researchers co-led by the University of Adelaide and the University of Arizona has analysed the genomes of more than 2,500 modern humans from 26 worldwide populations, to better understand how humans have adapted to historical coronavirus outbreaks.

access_time Embargo lifts in 2 days
Embargo will expire: 29-Jun-2021 4:00 PM EDT Released to reporters: 24-Jun-2021 10:35 AM EDT

A reporter's PressPass is required to access this story until the embargo expires on 29-Jun-2021 4:00 PM EDT The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

Newswise: COVIDLockdownSimulations.jpg
Released: 24-Jun-2021 10:00 AM EDT
Pandemic Air Quality Affected By Weather, Not Just Lockdowns
Washington University in St. Louis

Using a diverse set of tools, the lab of Randall Martin shows how the pandemic did – or didn’t – affect levels of particulate matter during COVID lockdowns.

Released: 24-Jun-2021 6:05 AM EDT
Longest known SARS-CoV-2 infection of nearly 300 days successfully treated with new therapy
University of Bristol

An immunocompromised individual with the longest known PCR confirmed case of SARS-CoV-2 infection, lasting more than 290 days, has been successfully treated with two investigational monoclonal antibodies (laboratory engineered antibodies). Clinicians and researchers from the University of Bristol and North Bristol NHS Trust (NBT) worked closely to assess and treat the infection and want to highlight the urgent need for improved access to treatments for such people with persistent SARS-CoV-2 infection.


Showing results

110 of 5872

close
1.92795