The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
SLAC National Accelerator Laboratory

In a leap for battery research, machine learning gets scientific smarts

The latest advance from a research collaboration with industry could dramatically accelerate the development of sturdier batteries for fast-charging electric vehicles.

Newswise — Menlo Park, Calif. — Scientists have taken a major step forward in harnessing machine learning to accelerate the design for better batteries: Instead of using it just to speed up scientific analysis by looking for patterns in data, as researchers generally do, they combined it with knowledge gained from experiments and equations guided by physics to discover and explain a process that shortens the lifetimes of fast-charging lithium-ion batteries.

It was the first time this approach, known as “scientific machine learning,” has been applied to battery cycling, said Will Chueh, an associate professor at Stanford University and investigator with the Department of Energy’s SLAC National Accelerator Laboratory who led the study. He said the results overturn long-held assumptions about how lithium-ion batteries charge and discharge and give researchers a new set of rules for engineering longer-lasting batteries.

The research, reported today in Nature Materials, is the latest result from a collaboration between Stanford, SLAC, the Massachusetts Institute of Technology and Toyota Research Institute (TRI). The goal is to bring together foundational research and industry know-how to develop a long-lived electric vehicle battery that can be charged in 10 minutes.

"Battery technology is important for any type of electric powertrain," said Patrick Herring, senior research scientist for Toyota Research Institute. “By understanding the fundamental reactions that occur within the battery we can extend its life, enable faster charging and ultimately design better battery materials. We look forward to building on this work through future experiments to achieve lower-cost, better-performing batteries."

 

A trio of advances

The new study builds on two previous advances where the group used more conventional forms of machine learning to dramatically accelerate both battery testing and the process of winnowing down many possible charging methods to find the ones that work best. While these studies allowed researchers to make much faster progress – reducing the time needed to determine battery lifetimes by 98%, for instance – they didn’t reveal the underlying physics or chemistry that made some batteries last longer than others, as the latest study did.

Combining all three approaches could potentially slash the time needed to bring a new battery technology from the lab bench to the consumer by as much as two-thirds, Chueh said.

“In this case, we are teaching the machine how to learn the physics of a new type of failure mechanism that could help us design better and safer fast-charging batteries,” Chueh said. “Fast charging is incredibly stressful and damaging to batteries, and solving this problem is key to expanding the nation’s fleet of electric vehicles as part of the overall strategy for fighting climate change.”

The new combined approach can also be applied to developing the grid-scale battery systems needed for a greater deployment of wind and solar electricity, which will become even more urgent as the nation pursues recently announced Biden Administration goals of eliminating fossil fuels from electric power generation by 2035 and achieving net-zero carbon emissions by 2050.

 

Zooming in for closeups

The new study zoomed in on battery electrodes, which are made of nano-sized grains glommed together into particles. Lithium ions slosh back and forth between the cathode and anode during charging and discharging, seeping into the particles and flowing back out again. This constant back-and-forth makes particles swell, shrink and crack, gradually decreasing their ability to store charge, and fast charging just makes things worse.

To look at this process in more detail, the team observed the behavior of cathode particles made of nickel, manganese and cobalt, a combination known as NMC that’s one of the most widely used materials in electric vehicle batteries. These particles absorb lithium ions when the battery discharges and release them when it charges.

Stanford postdoctoral researchers Stephen Dongmin Kang and Jungjin Park used X-rays from SLAC’s Stanford Synchrotron Radiation Lightsource to get an overall look at particles that were undergoing fast charging. Then they took particles to Lawrence Berkeley National Laboratory’s Advanced Light Source to be examined with scanning X-ray transmission microscopy, which homes in on individual particles.  

The data from those experiments, along with information from mathematical models of fast charging and equations that describe the chemistry and physics of the process, were incorporated into scientific machine learning algorithms.

“Rather than having the computer directly figure out the model by simply feeding it data, as we did in the two previous studies, we taught the computer how to choose or learn the right equations, and thus the right physics,” said Kang, who performed the modeling with MIT graduate student Hongbo Zhao, working with chemical engineering professor Martin Bazant.

 

The rich-get-richer effect

Until now, scientists had assumed that the differences between particles were insignificant and that their ability to store and release ions was limited by how fast lithium could move inside the particles, Kang said. In this way of seeing things, lithium ions flow in and out of all the particles at the same time and at roughly the same speed.

But the new approach revealed that the particles themselves control how fast lithium ions move out of cathode particles when a battery charges, he said. Some particles immediately release a lot of their ions while others release very few or none at all. And the quick-to-release particles go on releasing ions at a faster rate than their neighbors ­– a positive feedback, or “rich get richer,” effect that had not been identified before.

“We now have a picture – literally a movie – of how lithium moves around inside the battery, and it’s very different than scientists and engineers thought it was,” Kang said. “This uneven charging and discharging puts more stress on the electrodes and decreases their working lifetimes. Understanding this process on a fundamental level is an important step toward solving the fast charging problem.”

The scientists say their new method has potential for improving the cost, storage capacity, durability and other important properties of batteries for a wide range of applications, from electric vehicles to laptops to large-scale storage of renewable energy on the grid.

“It was just two years ago that the 2019 Nobel Prize in chemistry was awarded for the development of rechargeable lithium-ion batteries, which dates back to the 1970s,” Chueh said. “So I am encouraged that there’s still so much to learn about how to make batteries better.”

This research was funded by Toyota Research Institute. The Stanford Synchrotron Radiation Lightsource and Advanced Light Source are DOE Office of Science user facilities, and work there was supported by the DOE Office of Science and the DOE Advanced Battery Materials Research Program.

 

SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation. 

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

SEE ORIGINAL STUDY

MEDIA CONTACT
Register for reporter access to contact details
Newswise: In a leap for battery research, machine learning gets scientific smarts

Credit: Greg Stewart/SLAC National Accelerator Laboratory

Caption:

Newswise: In a leap for battery research, machine learning gets scientific smarts

Credit: Hongbo Zhao/MIT

Caption: An animation shows two contrasting views of how electrode particles release their stored lithium ions during battery charging. Red particles are full of lithium and green ones are empty. Scientists had thought ions flowed out of all the particles at once and at roughly the same speed (left). But a new study by SLAC and Stanford researchers paints a different picture (right): Some particles release a lot of ions immediately and a fast clip, while others release ions slowly or not at all. This uneven pattern stresses the battery and reduces its lifetime.

Newswise: In a leap for battery research, machine learning gets scientific smarts

Credit: Jacqueline Orrell/SLAC National Accelerator Laboratory

Caption: Staff engineer Bruis van Vlijmen demonstrates how he works in the Battery Informatics Lab at SLAC.

Newswise: In a leap for battery research, machine learning gets scientific smarts

Credit: Jacqueline Orrell/SLAC National Accelerator Laboratory

Caption: Staff engineer Bruis van Vlijmen holds up a single battery cell in SLAC’s Battery Informatics Lab.

Newswise: In a leap for battery research, machine learning gets scientific smarts

Credit: Jacqueline Orrell/SLAC National Accelerator Laboratory

Caption: Stanford postdoctoral researcher Stephen Dongmin Kang demonstrates how he works in a SLAC battery lab. Kang and Jungjin Park have been doing research at SLAC and Lawrence Berkeley National Laboratory to observe the behavior of particles made of nickel, manganese and cobalt, also known as NMC. NMC is one of the most widely used materials in electric vehicles.

Newswise: In a leap for battery research, machine learning gets scientific smarts

Credit: Jacqueline Orrell/SLAC National Accelerator Laboratory

Caption: Stanford postdoctoral researcher Stephen Dongmin Kang, left, demonstrates how he works at a modular glovebox workstation while Stanford postdoc Jungjin Park works at a neighboring computer in a SLAC battery lab. Kang and Park have been observing the behavior of electrode particles made of nickel, manganese and cobalt, also known as NMC. NMC is one of the most widely used materials in electric vehicle batteries.

CITATIONS

Jungjin Park et al., Nature Materials, 8 March 2021

DOE-Explains
X
X
X


Filters close
Newswise: A Cousin of Table Salt Could Make Energy Storage Faster and Safer
Released: 16-Jun-2021 10:10 AM EDT
A Cousin of Table Salt Could Make Energy Storage Faster and Safer
Department of Energy, Office of Science

Scientists have found that lithium vanadium oxide can rapidly charge and discharge energy. The material has a structure similar to table salt but with a more random atomic arrangement. It charges and discharges without growing lithium metal “dendrites” that can cause dangerous short circuits. This could lead to safer, faster-charging batteries for electric vehicles.

access_time Embargo lifts in 2 days
Embargo will expire: 17-Jun-2021 9:00 AM EDT Released to reporters: 16-Jun-2021 10:05 AM EDT

A reporter's PressPass is required to access this story until the embargo expires on 17-Jun-2021 9:00 AM EDT The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

Newswise: Internships Put Futures in Flight
Released: 15-Jun-2021 6:05 PM EDT
Internships Put Futures in Flight
Pacific Northwest National Laboratory

PNNL intern Ki Ahn spent this past year as an undergraduate at PNNL gaining hands-on research experience in clean energy storage technologies for vehicles and aviation. Ahn is enrolling in Stanford University this fall to finish his bachelor’s degree. With plans to major in mechanical engineering or computer science, he wants to explore how future aircraft technologies can be designed to reduce harmful environmental effects.

Newswise: Researchers Poised To Deliver Key Scientific Findings In The Fast Lane
Released: 15-Jun-2021 4:25 PM EDT
Researchers Poised To Deliver Key Scientific Findings In The Fast Lane
Princeton Plasma Physics Laboratory

PPPL forges ahead with development of streaming media to provide rapid analysis of key findings of remote fusion experiments.

Newswise:Video Embedded efficient-dehumidifier-makes-air-conditioning-a-breeze
VIDEO
Released: 15-Jun-2021 4:05 PM EDT
Efficient Dehumidifier Makes Air Conditioning a Breeze
Pacific Northwest National Laboratory

New energy-efficient dehumidifier technology holds promise to reduce energy consumption in residential A/C systems and increase the range of electric vehicles.

Newswise:Video Embedded can-artificial-intelligence-open-new-doors-for-materials-discovery
VIDEO
Released: 15-Jun-2021 2:45 PM EDT
Can Artificial Intelligence Open New Doors for Materials Discovery?
Argonne National Laboratory

An Argonne engineer applied a specific type of artificial intelligence to the problem of how to predict material structures by only knowing some of their properties. This first-of-its-kind discovery led to further insights into the long-term durability of nuclear materials.

Newswise: Renowned Physicist Steps Down from Theory Department Leadership at PPPL to Devote Full Time to Teaching and Research
Released: 15-Jun-2021 2:35 PM EDT
Renowned Physicist Steps Down from Theory Department Leadership at PPPL to Devote Full Time to Teaching and Research
Princeton Plasma Physics Laboratory

Physicist Amitava Bhattacharjee steps down as head of the PPPL Theory Department that he has transformed during nine years of leadership.

Newswise: A Keen Eye Behind the Microscope
Released: 14-Jun-2021 3:10 PM EDT
A Keen Eye Behind the Microscope
Pacific Northwest National Laboratory

PNNL's Dongsheng Li’s crystal formation research helped reveal why nanoparticles sometimes self-assemble into five-sided shapes. The discovery will potentially be useful in medical research, electronics, and other applications.

Newswise: Scientists Discover How Oxygen Loss Saps a Lithium-ion Battery’s Voltage
Released: 14-Jun-2021 12:05 PM EDT
Scientists Discover How Oxygen Loss Saps a Lithium-ion Battery’s Voltage
SLAC National Accelerator Laboratory

SLAC and Stanford scientists took a unique and detailed nanoscale look at how oxygen seeps out of lithium-ion battery electrodes, sapping their energy over time. The results could suggest a fix.

Newswise: Breaking Through with Laboratory Directed Research and Development
Released: 14-Jun-2021 12:05 PM EDT
Breaking Through with Laboratory Directed Research and Development
Department of Energy, Office of Science

Meant to foster innovation, the Department of Energy Office of Science’s Laboratory Directed Research and Development program has supported the development of a number of technologies, including the CRISPR-Cas9 gene editing process.

View More
Newswise: A Cousin of Table Salt Could Make Energy Storage Faster and Safer
Released: 16-Jun-2021 10:10 AM EDT
A Cousin of Table Salt Could Make Energy Storage Faster and Safer
Department of Energy, Office of Science

Scientists have found that lithium vanadium oxide can rapidly charge and discharge energy. The material has a structure similar to table salt but with a more random atomic arrangement. It charges and discharges without growing lithium metal “dendrites” that can cause dangerous short circuits. This could lead to safer, faster-charging batteries for electric vehicles.

access_time Embargo lifts in 2 days
Embargo will expire: 17-Jun-2021 9:00 AM EDT Released to reporters: 16-Jun-2021 10:05 AM EDT

A reporter's PressPass is required to access this story until the embargo expires on 17-Jun-2021 9:00 AM EDT The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

Newswise: Internships Put Futures in Flight
Released: 15-Jun-2021 6:05 PM EDT
Internships Put Futures in Flight
Pacific Northwest National Laboratory

PNNL intern Ki Ahn spent this past year as an undergraduate at PNNL gaining hands-on research experience in clean energy storage technologies for vehicles and aviation. Ahn is enrolling in Stanford University this fall to finish his bachelor’s degree. With plans to major in mechanical engineering or computer science, he wants to explore how future aircraft technologies can be designed to reduce harmful environmental effects.

Newswise: Researchers Poised To Deliver Key Scientific Findings In The Fast Lane
Released: 15-Jun-2021 4:25 PM EDT
Researchers Poised To Deliver Key Scientific Findings In The Fast Lane
Princeton Plasma Physics Laboratory

PPPL forges ahead with development of streaming media to provide rapid analysis of key findings of remote fusion experiments.

Newswise:Video Embedded efficient-dehumidifier-makes-air-conditioning-a-breeze
VIDEO
Released: 15-Jun-2021 4:05 PM EDT
Efficient Dehumidifier Makes Air Conditioning a Breeze
Pacific Northwest National Laboratory

New energy-efficient dehumidifier technology holds promise to reduce energy consumption in residential A/C systems and increase the range of electric vehicles.

Newswise:Video Embedded can-artificial-intelligence-open-new-doors-for-materials-discovery
VIDEO
Released: 15-Jun-2021 2:45 PM EDT
Can Artificial Intelligence Open New Doors for Materials Discovery?
Argonne National Laboratory

An Argonne engineer applied a specific type of artificial intelligence to the problem of how to predict material structures by only knowing some of their properties. This first-of-its-kind discovery led to further insights into the long-term durability of nuclear materials.

Newswise: Renowned Physicist Steps Down from Theory Department Leadership at PPPL to Devote Full Time to Teaching and Research
Released: 15-Jun-2021 2:35 PM EDT
Renowned Physicist Steps Down from Theory Department Leadership at PPPL to Devote Full Time to Teaching and Research
Princeton Plasma Physics Laboratory

Physicist Amitava Bhattacharjee steps down as head of the PPPL Theory Department that he has transformed during nine years of leadership.

Newswise: A Keen Eye Behind the Microscope
Released: 14-Jun-2021 3:10 PM EDT
A Keen Eye Behind the Microscope
Pacific Northwest National Laboratory

PNNL's Dongsheng Li’s crystal formation research helped reveal why nanoparticles sometimes self-assemble into five-sided shapes. The discovery will potentially be useful in medical research, electronics, and other applications.

Newswise: Scientists Discover How Oxygen Loss Saps a Lithium-ion Battery’s Voltage
Released: 14-Jun-2021 12:05 PM EDT
Scientists Discover How Oxygen Loss Saps a Lithium-ion Battery’s Voltage
SLAC National Accelerator Laboratory

SLAC and Stanford scientists took a unique and detailed nanoscale look at how oxygen seeps out of lithium-ion battery electrodes, sapping their energy over time. The results could suggest a fix.

Newswise: Breaking Through with Laboratory Directed Research and Development
Released: 14-Jun-2021 12:05 PM EDT
Breaking Through with Laboratory Directed Research and Development
Department of Energy, Office of Science

Meant to foster innovation, the Department of Energy Office of Science’s Laboratory Directed Research and Development program has supported the development of a number of technologies, including the CRISPR-Cas9 gene editing process.

View More
Newswise: A Cousin of Table Salt Could Make Energy Storage Faster and Safer
Released: 16-Jun-2021 10:10 AM EDT
A Cousin of Table Salt Could Make Energy Storage Faster and Safer
Department of Energy, Office of Science

Scientists have found that lithium vanadium oxide can rapidly charge and discharge energy. The material has a structure similar to table salt but with a more random atomic arrangement. It charges and discharges without growing lithium metal “dendrites” that can cause dangerous short circuits. This could lead to safer, faster-charging batteries for electric vehicles.

access_time Embargo lifts in 2 days
Embargo will expire: 17-Jun-2021 9:00 AM EDT Released to reporters: 16-Jun-2021 10:05 AM EDT

A reporter's PressPass is required to access this story until the embargo expires on 17-Jun-2021 9:00 AM EDT The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

Newswise: Internships Put Futures in Flight
Released: 15-Jun-2021 6:05 PM EDT
Internships Put Futures in Flight
Pacific Northwest National Laboratory

PNNL intern Ki Ahn spent this past year as an undergraduate at PNNL gaining hands-on research experience in clean energy storage technologies for vehicles and aviation. Ahn is enrolling in Stanford University this fall to finish his bachelor’s degree. With plans to major in mechanical engineering or computer science, he wants to explore how future aircraft technologies can be designed to reduce harmful environmental effects.

Newswise: Researchers Poised To Deliver Key Scientific Findings In The Fast Lane
Released: 15-Jun-2021 4:25 PM EDT
Researchers Poised To Deliver Key Scientific Findings In The Fast Lane
Princeton Plasma Physics Laboratory

PPPL forges ahead with development of streaming media to provide rapid analysis of key findings of remote fusion experiments.

Newswise:Video Embedded efficient-dehumidifier-makes-air-conditioning-a-breeze
VIDEO
Released: 15-Jun-2021 4:05 PM EDT
Efficient Dehumidifier Makes Air Conditioning a Breeze
Pacific Northwest National Laboratory

New energy-efficient dehumidifier technology holds promise to reduce energy consumption in residential A/C systems and increase the range of electric vehicles.

Newswise:Video Embedded can-artificial-intelligence-open-new-doors-for-materials-discovery
VIDEO
Released: 15-Jun-2021 2:45 PM EDT
Can Artificial Intelligence Open New Doors for Materials Discovery?
Argonne National Laboratory

An Argonne engineer applied a specific type of artificial intelligence to the problem of how to predict material structures by only knowing some of their properties. This first-of-its-kind discovery led to further insights into the long-term durability of nuclear materials.

Newswise: Renowned Physicist Steps Down from Theory Department Leadership at PPPL to Devote Full Time to Teaching and Research
Released: 15-Jun-2021 2:35 PM EDT
Renowned Physicist Steps Down from Theory Department Leadership at PPPL to Devote Full Time to Teaching and Research
Princeton Plasma Physics Laboratory

Physicist Amitava Bhattacharjee steps down as head of the PPPL Theory Department that he has transformed during nine years of leadership.

Newswise: A Keen Eye Behind the Microscope
Released: 14-Jun-2021 3:10 PM EDT
A Keen Eye Behind the Microscope
Pacific Northwest National Laboratory

PNNL's Dongsheng Li’s crystal formation research helped reveal why nanoparticles sometimes self-assemble into five-sided shapes. The discovery will potentially be useful in medical research, electronics, and other applications.

Newswise: Scientists Discover How Oxygen Loss Saps a Lithium-ion Battery’s Voltage
Released: 14-Jun-2021 12:05 PM EDT
Scientists Discover How Oxygen Loss Saps a Lithium-ion Battery’s Voltage
SLAC National Accelerator Laboratory

SLAC and Stanford scientists took a unique and detailed nanoscale look at how oxygen seeps out of lithium-ion battery electrodes, sapping their energy over time. The results could suggest a fix.

Newswise: Breaking Through with Laboratory Directed Research and Development
Released: 14-Jun-2021 12:05 PM EDT
Breaking Through with Laboratory Directed Research and Development
Department of Energy, Office of Science

Meant to foster innovation, the Department of Energy Office of Science’s Laboratory Directed Research and Development program has supported the development of a number of technologies, including the CRISPR-Cas9 gene editing process.

View More

Spotlight

ORNL partners on science kits for STEM schools
Mon, 17 May 2021 17:05:21 EST

ORNL partners on science kits for STEM schools

Oak Ridge National Laboratory

Graduate students gather virtually for summer school at PPPL
Mon, 05 Oct 2020 15:45:57 EST

Graduate students gather virtually for summer school at PPPL

Princeton Plasma Physics Laboratory

Virtual internships for physics students present challenges, build community
Tue, 15 Sep 2020 15:35:30 EST

Virtual internships for physics students present challenges, build community

Princeton Plasma Physics Laboratory

Blocking the COVID-19 Virus's Exit Strategy
Mon, 31 Aug 2020 15:05:12 EST

Blocking the COVID-19 Virus's Exit Strategy

Brookhaven National Laboratory

Summer Students Tackle COVID-19
Mon, 31 Aug 2020 14:35:39 EST

Summer Students Tackle COVID-19

Brookhaven National Laboratory

Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
Fri, 17 Apr 2020 16:25:17 EST

Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

Princeton Plasma Physics Laboratory

Barbara Garcia: A first-generation college student spends summer doing research at PPPL
Tue, 24 Sep 2019 15:05:51 EST

Barbara Garcia: A first-generation college student spends summer doing research at PPPL

Princeton Plasma Physics Laboratory

Argonne organization’s scholarship fund blazes STEM pathway
Tue, 17 Sep 2019 16:05:11 EST

Argonne organization’s scholarship fund blazes STEM pathway

Argonne National Laboratory

Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
Fri, 13 Sep 2019 10:30:34 EST

Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

Brookhaven National Laboratory

Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
Fri, 30 Aug 2019 09:00:26 EST

Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

Brookhaven National Laboratory

PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
Thu, 01 Aug 2019 11:05:23 EST

PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

Princeton Plasma Physics Laboratory

Creating a diverse pipeline
Fri, 19 Jul 2019 12:05:33 EST

Creating a diverse pipeline

Princeton Plasma Physics Laboratory

JSA Awards Graduate Fellowships for Research at Jefferson Lab
Mon, 08 Jul 2019 14:00:16 EST

JSA Awards Graduate Fellowships for Research at Jefferson Lab

Thomas Jefferson National Accelerator Facility

ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
Mon, 20 May 2019 11:05:42 EST

ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

Argonne National Laboratory

Integrating Scientific Computing into Science Curricula
Mon, 13 May 2019 10:05:46 EST

Integrating Scientific Computing into Science Curricula

Brookhaven National Laboratory

Students from Minnesota and Massachusetts Win DOE’s 29th National Science Bowl®
Mon, 29 Apr 2019 13:05:21 EST

Students from Minnesota and Massachusetts Win DOE’s 29th National Science Bowl®

Department of Energy, Office of Science

Young Women’s Conference in STEM seeks to change the statistics one girl at a time
Thu, 28 Mar 2019 14:05:07 EST

Young Women’s Conference in STEM seeks to change the statistics one girl at a time

Princeton Plasma Physics Laboratory

Students team with Argonne scientists and engineers to learn about STEM careers
Tue, 12 Mar 2019 16:05:09 EST

Students team with Argonne scientists and engineers to learn about STEM careers

Argonne National Laboratory

Lynbrook High wins 2019 SLAC Regional Science Bowl competition
Wed, 13 Feb 2019 14:05:35 EST

Lynbrook High wins 2019 SLAC Regional Science Bowl competition

SLAC National Accelerator Laboratory

Equipping the next generation for a technological revolution
Thu, 24 Jan 2019 13:05:29 EST

Equipping the next generation for a technological revolution

Argonne National Laboratory

Chemistry intern inspired by Argonne’s real-world science
Fri, 18 Jan 2019 17:05:40 EST

Chemistry intern inspired by Argonne’s real-world science

Argonne National Laboratory

Chasing a supernova
Fri, 18 Jan 2019 16:05:20 EST

Chasing a supernova

Argonne National Laboratory

Argonne intern streamlines the beamline
Tue, 08 Jan 2019 14:05:01 EST

Argonne intern streamlines the beamline

Argonne National Laboratory

Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
Thu, 11 Oct 2018 15:00:00 EST

Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

Rensselaer Polytechnic Institute (RPI)

Innovating Our Energy Future
Wed, 03 Oct 2018 18:05:41 EST

Innovating Our Energy Future

Oregon State University, College of Engineering

Physics graduate student takes her thesis research to a Department of Energy national lab
Tue, 02 Oct 2018 14:05:36 EST

Physics graduate student takes her thesis research to a Department of Energy national lab

University of Alabama at Birmingham

“Model” students enjoy Argonne campus life
Fri, 21 Sep 2018 12:05:48 EST

“Model” students enjoy Argonne campus life

Argonne National Laboratory

Writing Code for a More Skilled and Diverse STEM Workforce
Thu, 06 Sep 2018 12:05:58 EST

Writing Code for a More Skilled and Diverse STEM Workforce

Brookhaven National Laboratory

New graduate student summer school launches at Princeton Plasma Physics Laboratory
Tue, 04 Sep 2018 10:30:12 EST

New graduate student summer school launches at Princeton Plasma Physics Laboratory

Princeton Plasma Physics Laboratory

The Gridlock State
Fri, 31 Aug 2018 17:05:07 EST

The Gridlock State

California State University (CSU) Chancellor's Office

Meet Jasmine Hatcher and Trishelle Copeland-Johnson
Fri, 31 Aug 2018 13:05:55 EST

Meet Jasmine Hatcher and Trishelle Copeland-Johnson

Brookhaven National Laboratory

Argonne hosts Modeling, Experimentation and Validation Summer School
Fri, 24 Aug 2018 10:05:27 EST

Argonne hosts Modeling, Experimentation and Validation Summer School

Argonne National Laboratory

Students affected by Hurricane Maria bring their research to SLAC
Wed, 22 Aug 2018 12:05:42 EST

Students affected by Hurricane Maria bring their research to SLAC

SLAC National Accelerator Laboratory

Brookhaven Lab Pays Tribute to 2018 Summer Interns
Wed, 22 Aug 2018 09:05:24 EST

Brookhaven Lab Pays Tribute to 2018 Summer Interns

Brookhaven National Laboratory

Changing How Buildings Are Made
Mon, 20 Aug 2018 11:05:19 EST

Changing How Buildings Are Made

Washington University in St. Louis

CSUMB Selected to Host Architecture at Zero Competition in 2019
Thu, 16 Aug 2018 11:05:02 EST

CSUMB Selected to Host Architecture at Zero Competition in 2019

California State University, Monterey Bay

Department of Energy Invests $64 Million in Advanced Nuclear Technology
Fri, 20 Jul 2018 14:00:00 EST

Department of Energy Invests $64 Million in Advanced Nuclear Technology

Rensselaer Polytechnic Institute (RPI)

Professor Miao Yu Named the Priti and Mukesh Chatter ’82 Career Development Professor
Thu, 19 Jul 2018 16:00:00 EST

Professor Miao Yu Named the Priti and Mukesh Chatter ’82 Career Development Professor

Rensselaer Polytechnic Institute (RPI)

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
Tue, 03 Jul 2018 10:05:10 EST

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

Brookhaven National Laboratory

Argonne welcomes <em>The Martian</em> author Andy Weir
Fri, 29 Jun 2018 17:05:17 EST

Argonne welcomes The Martian author Andy Weir

Argonne National Laboratory

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
Mon, 18 Jun 2018 08:55:34 EST

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

Illinois Mathematics and Science Academy (IMSA)

Showing results

0-6 Of 50
close
2.86822