Research Alert

Abstract

During the past decade, a stem cell-based hypothesis has emerged (among many others) to explain the pathogenesis of endometriosis. The initial hypothesis proposed that endometriosis arose from a single or a few specific cells with stem cell properties, including self-renewal and multi-lineage cell differentiation. The origins of the endometriosis-initiating stem cells were thought to be the bone marrow, uterine endometrium, and other tissues. Based on the implantation or metastatic theory in combination with the initial stem cell theory, one or a few multipotent stem/progenitor cells present in the eutopic endometrium or bone marrow translocate to ectopic sites via fallopian tubes during menstruation, vasculolymphatic routes, or through direct migration and invasion. Subsequently, they give rise to endometriotic lesions followed by differentiation into various cell components of endometriosis, including glandular and stromal cells. Recent somatic mutation analyses of deep infiltrating endometriosis, endometrioma, and eutopic normal endometrium using next-generation sequencing techniques have redefined the stem cell theory. It is now proposed that stem/progenitor cells of at least two different origins—epithelium and stroma—sequentially, differentially, but coordinately contribute to the genesis of endometriosis. The dual stem cell theory on how two (or more) stem/progenitor cells differentially and coordinately participate in the establishment of endometriotic lesions remains to be elucidated. Furthermore, the stem/progenitor cells involved in this theory also remain to be identified. Given that the origin of endometriosis is eutopic endometrium, the candidate cells for endometriotic epithelium-initiating cells are likely to be endometrial epithelial cells positive for either N-cadherin or SSEA-1 or both. The candidate cells for endometriotic stroma-initiating cells may be endometrial mesenchymal stem cells positive for SUSD2. Endometrial side population cells are also a possible candidate because they contain unipotent or multipotent cells capable of behaving as endometrial epithelial and stromal stem/progenitor cells.

Journal Link: Journal of Personalized Medicine

MEDIA CONTACT
Register for reporter access to contact details
CITATIONS

Journal of Personalized Medicine