Developing the VTX-1 Liquid Biopsy System: Fast and Label-Free Enrichment of Circulating Tumor Cells

Article ID: 684342

Released: 16-Jan-2018 9:00 AM EST

Source Newsroom: SLAS (Society for Laboratory Automation and Screening)

  • Credit: Image courtesy of Marc Lim.

    Capturing CTCs Using the Vortex Chip: This is a diagram of how the Vortex Biosciences technology works. A blood sample flows down the micro-channels in the Vortex chip which is designed to form micro-vortices. These micro-vortices trap and retain the CTCs while the blood cells flow past. Once isolated, the CTCs can be released for downstream analysis.

Newswise — A new article in the February 2018 issue of SLAS Technology describes a new platform that could change the way cancer is diagnosed and treated by automating the isolation of circulating tumor cells (CTCs) directly from cancer patient blood. Entitled Fast and Label-Free Isolation of Circulating Tumor Cells from Blood: From a Research Microfluidic Platform to an Automated Fluidic Instrument, VTX-1 Liquid Biopsy System, this article provides unique insight into the development of a commercial system that has the potential to change the standard of care in cancer diagnosis and treatment.

CTCs can be isolated from a simple blood draw and may be representative of the diverse cancer patient biology because tumor cells are circulating in the blood stream from multiple tumor sites. The VTX-1 Liquid Biopsy System was designed to automate the isolation of clinically relevant CTC populations, making the CTCs available for easy analysis by a variety of techniques. In this publication, the transition from a cutting-edge microfluidic innovation in the research setting to a commercial, automated system for isolating CTCs directly from whole blood is outlined.

A number of improvements are reviewed as the technology transitioned into a commercial product. These improvements include better material for the microfluidic fabrication, automating the fluid processing in the chip, and the optimization of isolation protocols. The commercial VTX-1 Liquid Biopsy System is shown to recover spiked breast and lung cancer cell lines at a rate of 69% and 79.5% respectively while achieving a purity as low as

To show the utility of the platform for cancer research, several downstream applications are demonstrated on the CTCs isolated by the VTX-1. Clonogenic and cell invasion assays demonstrate that the cells isolated by the VTX-1 are intact and undisturbed by the processing, resulting in direct access to the cell’s cancer biology. To demonstrate that the VTX-1 can also process mouse samples, CTCs are isolated from two patient-derived orthotopic xenograft mouse models.

*****

Fast and Label-Free Isolation of Circulating Tumor Cells from Blood: From a Research Microfluidic Platform to an Automated Fluidic Instrument, VTX-1 Liquid Biopsy System can be accessed for free, ahead-of-print for a limited time at http://journals.sagepub.com/doi/full/10.1177/2472630317738698.SLAS Discovery is one of two PubMed:MEDLINE-indexed scientific journals published by SLAS. For more information about SLAS and its journals, visit www.slas.org/journals.

A PDF of this article is available to credentialed media outlets upon request. Contact nhallock@slas.org.

About our Society and Journals

SLAS (Society for Laboratory Automation and Screening) is an international community of nearly 20,000 professionals and students dedicated to life sciences discovery and technology. The SLAS mission is to bring together researchers in academia, industry and government to advance life sciences discovery and technology via education, knowledge exchange and global community building.

SLAS DISCOVERY: 2016 Impact Factor 2.444. Editor-in-Chief Robert M. Campbell, Ph.D., Eli Lilly and Company, Indianapolis, IN (USA). SLAS Discovery (Advancing Life Sciences R&D) was previously published (1996-2016) as the Journal of Biomolecular Screening (JBS).

SLAS TECHNOLOGY: 2016 Impact Factor 2.850. Editor-in-Chief Edward Kai-Hua Chow, Ph.D., National University of Singapore (Singapore). SLAS Technology (Translating Life Sciences Innovation) was previously published (1996-2016) as the Journal of Laboratory Automation (JALA).

Follow SLAS on Twitter at @SLAS_Org.

Follow SLAS on Facebook at SocietyforLaboratoryAutomationandScreening.

Follow SLAS on YouTube at SLASvideo. 

Follow SLAS Americas on LinkedIn at Society for Laboratory Automation and Screening (SLAS Americas). 

Follow SLAS Europe on LinkedIn at Society for Laboratory Automation and Screening Europe (SLAS Europe).


Comment/Share

Chat now!