Research Alert

BACKGROUND

Newswise — Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved. Regulating the various phenotypes of macrophages to enhance the inflammatory environment can significantly affect the progression of diseases and tissue engineering repair process.

AIM

To assess the influence of interleukin-10 (IL-10) on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) following their interaction with macrophages in an inflammatory environment.

METHODS

IL-10 modulates the differentiation of peritoneal macrophages in Wistar rats in an inflammatory environment. In this study, we investigated its impact on the proliferation, migration, and osteogenesis of BMSCs. The expression levels of signal transducer and activator of transcription 3 (STAT3) and its activated form, phosphorylated-STAT3, were examined in IL-10-stimulated macrophages. Subsequently, a specific STAT3 signaling inhibitor was used to impede STAT3 signal activation to further investigate the role of STAT3 signaling.

RESULTS

IL-10-stimulated macrophages underwent polarization to the M2 type through substitution, and these M2 macrophages actively facilitated the osteogenic differentiation of BMSCs. Mechanistically, STAT3 signaling plays a crucial role in the process by which IL-10 influences macrophages. Specifically, IL-10 stimulated the activation of the STAT3 signaling pathway and reduced the macrophage inflammatory response, as evidenced by its diminished impact on the osteogenic differentiation of BMSCs.

CONCLUSION

Stimulating macrophages with IL-10 proved effective in improving the inflammatory environment and promoting the osteogenic differentiation of BMSCs. The IL-10/STAT3 signaling pathway has emerged as a key regulator in the macrophage-mediated control of BMSCs’ osteogenic differentiation.

Key Words: Macrophages, Interleukin-10, Bone marrow mesenchymal stem cells, Signal transducer and activator of transcription 3, Inflammatory response

 

Core Tip: This study investigated the mechanism of interleukin-10 (IL-10) affecting macrophages in inflammatory environments, observed the effects of different macrophages on the biological behavior and osteogenic differentiation of bone marrow mesenchymal stem cells, and found that IL-10/signal transducer and activator of transcription 3 signaling plays a crucial role in promoting bone formation by affecting macrophages. This study provides a new strategy for solving the problem of poor osteogenesis in bone defect repair caused by an excessive inflammatory response in clinical work.



Journal Link: Publisher Website Journal Link: Download PDF

MEDIA CONTACT
Register for reporter access to contact details
CITATIONS

Publisher Website; Download PDF