Research Alert

Newswise — BACKGROUND

Mesenchymal stem cells (MSCs) modulated by various exogenous signals have been applied extensively in regenerative medicine research. Notably, nanosecond pulsed electric fields (nsPEFs), characterized by short duration and high strength, significantly influence cell phenotypes and regulate MSCs differentiation via multiple pathways. Consequently, we used transcriptomics to study changes in messenger RNA (mRNA), long noncoding RNA (lncRNA), microRNA (miRNA), and circular RNA expression during nsPEFs application.

AIM

To explore gene expression profiles and potential transcriptional regulatory mechanisms in MSCs pretreated with nsPEFs.

METHODS

The impact of nsPEFs on the MSCs transcriptome was investigated through whole transcriptome sequencing. MSCs were pretreated with 5-pulse nsPEFs (100 ns at 10 kV/cm, 1 Hz), followed by total RNA isolation. Each transcript was normalized by fragments per kilobase per million. Fold change and difference significance were applied to screen the differentially expressed genes (DEGs). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to elucidate gene functions, complemented by quantitative polymerase chain reaction verification.

RESULTS

In total, 263 DEGs were discovered, with 92 upregulated and 171 downregulated. DEGs were predominantly enriched in epithelial cell proliferation, osteoblast differentiation, mesenchymal cell differentiation, nuclear division, and wound healing. Regarding cellular components, DEGs are primarily involved in condensed chromosome, chromosomal region, actin cytoskeleton, and kinetochore. From aspect of molecular functions, DEGs are mainly involved in glycosaminoglycan binding, integrin binding, nuclear steroid receptor activity, cytoskeletal motor activity, and steroid binding. Quantitative real-time polymerase chain reaction confirmed targeted transcript regulation.

CONCLUSION

Our systematic investigation of the wide-ranging transcriptional pattern modulated by nsPEFs revealed the differential expression of 263 mRNAs, 2 miRNAs, and 65 lncRNAs. Our study demonstrates that nsPEFs may affect stem cells through several signaling pathways, which are involved in vesicular transport, calcium ion transport, cytoskeleton, and cell differentiation.

 

Core Tip: Nanosecond pulsed electric fields (nsPEFs) have been found to regulate the osteogenic, chondrogenic, and adipogenic differentiation of mesenchymal stem cells (MSCs). We hypothesized that several key factors may be regulated by nsPEFs, thereby influencing the biological functions of MSCs. Following exposure of MSCs to nsPEFs, we identified the differential expression of 263 messenger RNAs, 65 long noncoding RNAs, and 2 microRNAs. Verification by quantitative polymerase chain reaction and Gene Ontology and Kyoko Encyclopedia of Genes and Genomes enrichment analyses demonstrated the involvement of chromosome, cytoskeleton, and calcium signaling pathways following nsPEFs pretreatment. These results may be very meaningful for the further application of nsPEFs in MSCs.



Journal Link: World J Stem Cells 2024 Journal Link: Download PDF