How sex pheromones diversify: lessons from yeast

15-Jan-2019 10:05 AM EST

PLOS

Add to Favorites


Newswise — Many organisms including insects, amphibians and yeasts use sex pheromones for attracting individuals of the opposite sex, but what happens to sex pheromones as new species emerge? New research publishing January 22 in the open-access journal PLOS Biology from Taisuke Seike and Hironori Niki at the National Institute of Genetics, Japan and Chikashi Shimoda at Osaka City University, Japan studies sex pheromones in the fission yeast Schizosaccharomyces pombe, revealing an “asymmetric” pheromone recognition system in which one pheromone operates extremely stringently whereas the other pheromone is free to undergo a certain degree of diversification, perhaps leading to a first step towards speciation.

New species may emerge when two populations can no longer interbreed, and this so-called reproductive isolation, which restricts gene flow between populations, is one of the key mechanisms of speciation. Mutational alterations of the pheromone system can affect the ability of males and female to recognize each other, resulting in reproductive isolation; more generally, however, loss of pheromone activity may result in extinction of an organism’s lineage. The underlying mechanisms driving the diversification of pheromones within populations are not well understood.

The two sexes (“Plus” and “Minus”) of S. pombe each secrete a pheromone (“P-pheromone” and “M-pheromone”), which binds to a corresponding receptor on cells of the opposite sex. By exploring similarities and differences between genes encoding the two pheromones and their receptors in 150 wild S. pombe strains of different geographical origins, the researchers found that the M-pheromone and its receptor are completely invariant, whereas the P-pheromone and its receptor are very diverse in the strains investigated. Interestingly, such asymmetric diversification of the two pheromones is also seen in the closely related fission yeast species S. octosporus.

The authors speculate that the “asymmetric” system in fission yeast might allow flexible adaptation to mutational changes of pheromones while maintaining stringent recognition of mating partners. Indeed, the authors’ previous study in the fission yeast S. pombe demonstrated experimentally that several mutations in a pheromone and its corresponding receptor can lead to reproductive isolation, which in turn may give rise to a new species.

“Our findings contribute new insights into the evolutionary mechanisms underlying the diversification of pheromones. Organisms might have such systems for creating new versions of pheromones, allowing them to persist enough long in a population to evolve adaptations of receptors.” said Dr. Seike. Before a mutant is completely lost, a second suppressor mutation may occur to recover the first defect. Thus, the coevolution of pheromones/receptors can proceed step-by-step.

#####

In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000101

Press-only preview: https://plos.io/2so1ZCN

Contact: Taisuke Seike, taisuke.seike@riken.jp

Citation: Seike T, Shimoda C, Niki H (2019) Asymmetric diversification of mating pheromones in fission yeast. PLoS Biol 17(1): e3000101. https://doi.org/10.1371/journal.pbio.3000101

Funding: This work was supported by Japan Society for the Promotion of Science KAKENHI http://www.jsps.go.jp/english/index.html (Grant Number JP15J03416, JP17K15181) to TS, the Sumitomo Foundation http://www.sumitomo.or.jp/e/ (No. 160924) to TS, and Dr. Yoshifumi Jigami Memorial Fund, The Society of Yeast Scientists http://www.yeast.umin.jp/index.htmlto TS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

 

About PLOS Biology

PLOS Biology is an open-access, peer-reviewed journal published by PLOS, featuring research articles of exceptional significance, originality, and relevance in all areas of biology. For more information visit http://journals.plos.org/plosbiology/, or follow @PLOSBiology on Twitter.

Media and Copyright Information

For information about PLOS Biology relevant to journalists, bloggers and press officers, including details of our press release process and embargo policy, visit http://journals.plos.org/plosbiology/s/press-and-media.

PLOS Journals publish under a Creative Commons Attribution License, which permits free reuse of all materials published with the article, so long as the work is cited. 

About the Public Library of Science
Public Library of Science (PLOS) is a nonprofit Open Access publisher, innovator and advocacy organization dedicated to accelerating progress in science and medicine by leading a transformation in research communication. The PLOS suite of journals contain rigorously peer-reviewed Open Access research articles from all areas of science and medicine, together with expert commentary and analysis. In addition to journals, the organization advances innovations in scientific publishing through Collections, Communities and The PLOS Blog Network. Founded to catalyze a revolution in scientific publishing by demonstrating the value and feasibility of Open Access publication, PLOS is committed to innovative and forward-looking solutions to scientific communication. For more information, visit http://www.plos.org.

SEE ORIGINAL STUDY

  • share-facebook-How sex pheromones diversify: lessons from yeast
  • share-twitter-How sex pheromones diversify: lessons from yeast

Comment/Share

Chat now!