Scientists Create a Model for the Neural Basis of Expectation

12-Apr-2019 1:05 PM EDT

Stony Brook University

Add to Favorites


Newswise — STONY BROOK, NY, April 12 , 2019 –  It is known that sensory stimuli – especially powerful ones like taste – are affected by expectation, which is a trigger to improving stimuli detection, distinction and reaction. Yet, scientists know little about how expectation shapes the cortical processes of sensory information. Now Alfredo Fontanini, PhD, and Giancarlo La Camera, PhD, of the Department of Neurobiology and Behavior in the College of Arts and Sciences and the Renaissance School of Medicine at Stony Brook University, together with their postdoctoral fellow, Luca Mazzucato (now at the University of Oregon), have developed a theoretical model of how the primary gustatory cortex can mediate the expectation of receiving a taste.

In a paper published in Nature Neuroscience, the researchers detail their model which theoretically explains the neural basis of expectation.

The data show experimental evidence that a state of expectation is mediated by an acceleration of the neural activity generated by certain populations of neurons. The authors built a biologically plausible model of this phenomenon based on the modulation of the brain’s own spontaneous activity.

“Neurons in the cortex appear to be continuously active and erratic, giving us a messy sensation of what neurons are doing,” says La Camera. “Our model sheds a potential light on the meaning of such continuous activity and proposes a mechanism through which it could be mediating expectation.”

Although the empirical demonstration of the principle was performed in the gustatory cortex, the model may go beyond taste processing as it posits, as a general theory, that expectations can be mediated by a change in the dynamics of certain cortical circuits.

“For this reason”, add the authors, “we do not exclude that other processes such as attention and decision making may be explained by an analogous mechanism.”

The research was supported in part by grants from National Institute of Health’s National Institute on Deafness and Other Communications Disorders (NIDCD) and the National Science Foundation.

 

###

0.63767