Abstract: Limb girdle muscular dystrophies (LGMD), caused by mutations in 29 different genes, are the fourth most prevalent group of genetic muscle diseases, leading to progressive weakness and atrophy of the skeletal muscles. Although the link between LGMD and their genetic origins has been determined, LGMD still represent an unmet medical need. In this paper, we describe a platform for modeling LGMD based on the use of human induced pluripotent stem cells (hiPSC). Thanks to the self-renewing and pluripotency properties of hiPSC, this platform provides an alternative and renewable source of skeletal muscle cells (skMC) to primary, immortalized or overexpressing cells. We report that skMC derived from hiPSC express the majority of the genes and proteins causing LGMD. As a proof of concept, we demonstrate the importance of this cellular model for studying LGMDR9 by evaluating disease-specific phenotypes in skMC derived from hiPSC obtained from four patients.

Journal Link: 10.20944/preprints202205.0020.v1 Journal Link: Publisher Website Journal Link: Download PDF Journal Link: Google Scholar