Newswise — BUFFALO, N.Y., July 27, 2020 -- Life on Earth manages to exist in the Mariana Trench and deep below the ocean floor, where extreme conditions create large effects on the behavior of biological molecules.

At the Cornell High Energy Synchrotron Source (CHESS), a facility dedicated to high-pressure biological X-ray scattering (HP-Bio) is available for use to explore those deep ocean molecules. Richard Gillilan, a staff scientist at CHESS, will describe the main capabilities of BioSAXS and call for scientific use of the facility at the 70th Annual Meeting of the American Crystallographic Association, to be held virtually Aug. 2-7.

The technology stemmed from the worldwide scientific interest generated by the success of the Deep Carbon Observatory. Thanks to the National Science Foundation, the National Institutes of Health and the state of New York, CHESS created a user facility dedicated to structural biology, where scientists can conduct studies under extreme pressure, temperature, pH, salt and anoxic conditions.

“There’s been a lack of places for people to go to do high-pressure biophysical measurements, so we’re addressing that need,” Gillilan said. “We’ve joined forces with the new NSF Research Coordination Network on Extreme Biophysics to help make that happen.”

Organisms can live in rock pores deep underground and far below the ocean floor. Understanding the impacts of these conditions may be an important key to uncovering life elsewhere in the universe and to making more sense of its origins here at home.

“How any organisms that we know can function at these extreme conditions is really unknown,” said Gillilan. “Biochemistry and molecular biology could be completely different down there.”

Gillilan will discuss the design and performance of two of the main technologies at HP-Bio, one of which can take measurements reaching nearly 7,000 times atmospheric pressure.

“If there’s one thing I want everybody to remember, it’s this one statement,” he said. “Anything a biomolecule does changes its volume.”

The relationship between pressure and volume -- which affects molecular properties -- is the reason why high-pressure studies are so important.

High-pressure structural biology is still a largely unexplored field. Gillilan emphasizes CHESS is a unique new tool that can help improve the understanding of biophysical processes.

The virtual session, “High Pressure BioSAXS for Deep Life and Extreme Biophysics,” will be held Monday, Aug. 3 at 12:45 p.m. EDT. Media interested in viewing the virtual talk should contact [email protected] for access.



Main meeting website: 
Annual meeting program:


We will grant free registration to credentialed journalists and professional freelance journalists. If you are a reporter and would like to view the virtual talks and sessions, contact [email protected]. For urgent requests, staff at [email protected] can help with setting up interviews and obtaining images, video or background information.


The American Crystallographic Association was founded in 1949 through a merger of the American Society for X-Ray and Electron Diffraction (ASXRED) and the Crystallographic Society of America (CSA). The objective of the ACA is to promote interactions among scientists who study the structure of matter at atomic (or near atomic) resolution. These interactions will advance experimental and computational aspects of crystallography and diffraction. Understanding the nature of the forces that both control and result from the molecular and atomic arrangements in matter will help shed light on chemical interactions in nature and can therefore lead to cures for disease. See


Journal Link: 70th Annual Meeting of the American Crystallographic Association