Newswise — From the fuzzy feeling on your teeth to the unfortunate condition of halitosis, bacteria shape mouth health. When dental illnesses take hold, diagnosis and treatment is necessary, but identifying the microorganisms behind an infection can be a lengthy and expensive process. Now, researchers reporting in ACS Applied Materials & Interfaces have designed a chemical sensor array, or an artificial tongue, that distinguishes dental bacteria and can inactivate them.

When bacteria are suspected as the agent behind dental disease, such as cavities or periodontitis, the first step is to identify the source. Traditional detection and identification methods can involve culturing or looking for specific DNA markers belonging to different species using sophisticated equipment. So, Na Lu, Zisheng Tang and coworkers wanted to investigate a simple and less expensive alternative: sensor arrays known as electronic or artificial tongues. Previously developed artificial tongues have detected and measured several types of bacteria, similar to how a real tongue can taste multiple flavors at once. And the researchers wanted to add in the capability of reducing the effects of, or inactivating, the identified dental bacteria.

The researchers turned to a nanoscopic particle that mimics natural enzymes, called a nanozyme, and made them from iron oxide particles coated in DNA strands. When hydrogen peroxide and a colorless indicator were added in solution, the presence of nanozymes caused the indicator to turn bright blue. However, bacteria that adhered to the DNA decreased the nanozyme’s reactivity, reducing the amount of blue color produced. The researchers coated nanozymes with different DNA strands so that each type of bacteria could be linked to a unique change in color signals. To test the DNA-nanozyme system, as an artificial tongue, the researchers created samples of 11 different dental bacteria species. The sensor array was able to identify all the bacteria in artificial saliva samples. Then, using the DNA-encoded nanozyme sensor array, the researchers were able to distinguish whether a dental plaque sample came from a healthy volunteer or from a person with cavities.

In addition, the DNA-encoded nanozyme sensor array had antibacterial effects on the dental bacteria species tested. Compared to controls without the nanozymes, three typical bacterial species were inactivated in solutions containing the nanozyme system. Scanning electronic microscopic images suggest to the researchers that the nanozyme system destroyed the bacteria membranes. They suggest that this sensor system could also be used in the future to diagnose and treat bacterial dental diseases.

The authors acknowledge funding from the National Natural Science Foundation of China, the National Key Research and Development Program of China, the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the Municipal Science and Technology Committee of Shanghai Outstanding Academic Leaders Plan (Youth).

The paper’s abstract is available here: http://pubs.acs.org/doi/abs/10.1021/acsami.3c17134 

For more of the latest research news, register for our upcoming meeting, ACS Spring 2024. Journalists and public information officers are encouraged to apply for complimentary press registration by completing this form

###

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Note: ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies.

Follow us: X, formerly Twitter | Facebook | LinkedIn | Instagram

MEDIA CONTACT
Register for reporter access to contact details
CITATIONS

ACS Applied Materials & Interfaces