University of California San Diego Health

How SARS-CoV-2 Hijacks Human Cells to Evade Immune System

Newswise — Researchers at University of California San Diego School of Medicine have discovered one way in which SARS-CoV-2, the coronavirus that causes COVID-19, hijacks human cell machinery to blunt the immune response, allowing it to establish infection, replicate and cause disease.

In short, the virus’ genome gets tagged with a special marker by a human enzyme that tells the immune system to stand down, while at the same time ramping up production of the surface proteins that SARS-CoV-2 uses as a “doorknob” to enter cells.

The study, published April 22, 2021 in Cell Reports, helps lay the groundwork for new anti-viral immunotherapies — treatments that work by boosting a patient’s immune system, rather than directly killing the virus.

“It’s very smart of this virus to use host machinery to simultaneously go into stealth mode and get inside more cells,” said Tariq Rana, PhD, professor and chief of the Division of Genetics in the Department of Pediatrics at UC San Diego School of Medicine and Moores Cancer Center. “The more we know about how the virus establishes itself in the body, the better equipped we are to disrupt it.”

In human cells, genes (DNA) are transcribed into RNA, which is then translated into proteins, the molecules that make up the majority of cells. But it’s not always so straightforward. Cells can chemically modify RNA to influence protein production. One of these modifications is the addition of methyl groups to adenosine, one of the building blocks that make up RNA. Known as N6-methyladenosine (m6A), this modification is common in humans and other organisms, including viruses.

In contrast to humans, the entire genomes of some viruses, including SARS-CoV-2, are made up of RNA instead of DNA. And rather than carry around the machinery to translate that into proteins, the coronavirus gets human cells to do the work.

Rana and his team previously discovered that m6A plays an and Zika virus infections. In their latest study, the researchers discovered that the human enzyme METTL3 adds methyl groups to introduce m6A in SARS-CoV-2’s RNA. That modification prevents the virus’ RNA from triggering inflammatory molecules known as cytokines. To the team’s surprise, METTL3’s activity also led to increased expression of pro-viral genes — those that encode proteins needed for SARS-CoV-2 replication and survival, such as ACE2, the cell surface receptor that the virus uses to enter human cells.

“It remains to be seen why our cells help the virus out like this,” Rana said.

When the team removed METTL3 from cells in the laboratory, using gene silencing or other methods, they saw the reverse — a pro-inflammatory molecule known as RIG1 binds the viral RNA, more inflammatory cytokines were produced, and pro-viral genes were inhibited. Ultimately, inhibiting METTL3 suppressed viral replication.

To see how this mechanism plays out in the real world, the team compared post-mortem lung samples from COVID-19 patients and healthy lung biopsies. In patients who had died from severe COVID-19, the team found, METTL3 expression was lower and inflammatory genes were elevated. That makes sense in later stages of COVID-19, Rana said, because cytokine storm — the excessive activation of the patient’s own immune system — is known to worsen the disease.

“It’s like there are two phases of the infection — in the first, the virus needs METTL3 to help it evade the immune response,” he said, “but in the second phase, once the virus is replicating like crazy, it’s better to downregulate METTL3.”

Rana’s team is now validating their findings in animal models, and developing METTL3 inhibitors to test as potential experimental therapies for COVID-19.

“We hope that by manipulating m6A levels in the virus, we might be able to time the innate immune response in a way that benefits patients with COVID19, especially for the mild or moderate patients who haven’t developed cytokine storm,” Rana said. “The challenge is that cells have many other enzymes like METTL3, known as methyltransferases, so inhibiting it would need to be done very specifically, at a specific time.”

Co-authors of the study include: Na Li, Hui Hui, Bill Bray, Rob Knight, Davey Smith, Aaron F. Carlin, UC San Diego; Gwendolyn Michelle Gonzalez, Yinsheng Wang, UC Riverside; Mark Zeller, Kristian G. Anderson, Scripps Research.

Funding for this research came, in part, from the National Institutes of Health (grants K08 AI130381, CA177322, DA039562, DA046171 and AI125103), Burroughs Wellcome Fund USA and John and Mary Tu Foundation.

###

Disclosure: Tariq Rana is a founder of ViRx Pharmaceuticals and has an equity interest in the company. The terms of this arrangement have been reviewed and approved by the University of California San Diego in accordance with its conflict of interest policies.

SEE ORIGINAL STUDY



Filters close

Showing results

110 of 5857
Released: 22-Jun-2021 5:10 PM EDT
Tecnología de inteligencia artificial y ECG puede rápidamente descartar infección por COVID-19
Mayo Clinic

La inteligencia artificial puede ofrecer un manera de determinar con exactitud que una persona no está infectada con la COVID-19. Un estudio internacional y retrospectivo descubrió que la infección por SARS-CoV-2, el virus que causa la COVID-19, provoca sutiles cambios eléctricos en el corazón. Un electrocardiograma (ECG) mediado por inteligencia artificial detecta estos cambios y puede servir como una prueba rápida y confiable para descartar la infección por COVID-19.

Released: 22-Jun-2021 4:45 PM EDT
Penn Medicine to Use $1M from City of Philadelphia for Additional Community Vaccination Clinics
Perelman School of Medicine at the University of Pennsylvania

Penn Medicine will continue its collaboration with the West and Southwest Philadelphia communities to operate a series of COVID-19 vaccine clinics in partnership with community organizations, faith-based institutions, restaurants, barbershops, and even professional sports teams thanks to $1 million in funding from the City of Philadelphia, in partnership with PMHCC.

Released: 22-Jun-2021 12:30 PM EDT
Political Variables Carried More Weight Than Healthcare in Government Response to COVID-19
Binghamton University, State University of New York

Political institutions such as the timing of elections and presidentialism had a larger influence on COVID-19 strategies than the institutions organizing national healthcare, according to a research team led by a professor at Binghamton University, State University of New York.

22-Jun-2021 12:00 PM EDT
Study Testing How Well COVID-19 Vaccine Prevents Infection and Spread of SARS-CoV-2 Among University Students Now Expands to Include Young Adults Beyond the University Setting
Covid-19 Prevention Network (CoVPN)

The Prevent COVID U study, which launched in late March 2021 to evaluate SARS-CoV-2 infection and transmission among university students vaccinated with the Moderna COVID-19 Vaccine, has expanded beyond the university setting to enroll young adults ages 18 through 29 years and will now also include people in this age group who choose not to receive a vaccine.

Newswise: First Wave COVID-19 Data Underestimated Pandemic Infections
18-Jun-2021 8:30 AM EDT
First Wave COVID-19 Data Underestimated Pandemic Infections
American Institute of Physics (AIP)

Two COVID-19 pandemic curves emerged within many cities during the one-year period from March 2020 to March 2021. Oddly, the number of total daily infections reported during the first wave is much lower than that of the second, but the total number of daily deaths reported during the first wave is much higher than the second wave.

Newswise: PNNL AI Expert Harnesses Open-Source Data to Understand Human Behavior
Released: 22-Jun-2021 9:55 AM EDT
PNNL AI Expert Harnesses Open-Source Data to Understand Human Behavior
Pacific Northwest National Laboratory

PNNL researchers used natural language processing and deep learning techniques to reveal how and why different types of misinformation and disinformation spread across social platforms. Applied to COVID-19, the team found that misinformation intended to influence politics and incite fear spreads fastest.

Released: 22-Jun-2021 8:30 AM EDT
Engineering Nanobodies As Lifesavers When SARS-CoV-2 Variants Attack
Ohio State University

Scientists are pursuing a new strategy in the protracted fight against the SARS-CoV-2 virus by engineering nanobodies that can neutralize virus variants in two different ways.

Released: 21-Jun-2021 3:45 PM EDT
Rare Neurological Disorder Documented Following COVID-19 Vaccination
American Neurological Association (ANA)

In two separate articles in the Annals of Neurology, clinicians in India and England report cases of a rare neurological disorder called Guillain-Barré syndrome after individuals were vaccinated against COVID-19.

Newswise: New Analysis reveals link between birthdays and COVID-19 spread during the height of the pandemic
17-Jun-2021 12:10 PM EDT
New Analysis reveals link between birthdays and COVID-19 spread during the height of the pandemic
Harvard Medical School

Risk of SARS-CoV-2 infection increased 30 percent for households with a recent birthday in counties with high rates of COVID-19 Findings suggest informal social gatherings such as birthday parties played role in infection spread at the height of the coronavirus pandemic No birthday-bash infection jumps seen in areas with low rates of COVID-19 Households with children’s birthdays had greater risk of SARS-CoV-2 infection than with adult birthdays

Newswise: COVID-19 dual-antibody therapies effective against variants in animal study
Released: 21-Jun-2021 10:05 AM EDT
COVID-19 dual-antibody therapies effective against variants in animal study
Washington University in St. Louis

A study from Washington University School of Medicine in St. Louis suggests that many, but not all, COVID-19 therapies made from combinations of two antibodies are effective against a wide range of virus variants, and that combination therapies appear to prevent the emergence of drug resistance.


Showing results

110 of 5857

close
1.22237