University of California San Diego

Supercomputer Calculations Boost Our Understanding of Our Immune System

SDSC Assists Vanderbilt University Human Vaccines Project

By Kimberly Mann Bruch, SDSC Communications

Newswise — While researchers around the world race to develop an effective and safe COVID-19 vaccine, a team from the San Diego Supercomputer Center (SDSC) at UC San Diego contributed to a study led by Vanderbilt Vaccine Center of Vanderbilt University Medical Center (VUMC) on T cell receptors, which play a vital role in alerting the adaptive immune system to mount an attack on invading foreign pathogens including the Coronavirus SARS-CoV-2.

SDSC’s Comet supercomputer was recently used to perform complex calculations on the receptor sequence data from sorted human T cells to allow scientists to better understand the size and diversity receptor repertoire in healthy individuals. The team’s findings were published last month in Cell Reports as a follow-up study to earlier findings about B cells published in the journal Nature last year.

Both B cells and T cells are constituents of the adaptive immune system and form the second line of defense against viruses, bacteria, cancer, and other toxic pathogens that slip past the innate immune response. The adaptive immune system remembers the invading pathogen after first encounter and forms the basis of effective vaccines. To advance our understanding, the researchers sequenced receptors from the transcriptome of billions of cells to assess the somatic recombination of different gene segments that comprise the circulating B and T cell receptors from healthy Caucasian individuals. They found that T cell receptors, like B cell receptors, exhibit significantly higher overlap in different individuals than expected by chance.

In addition, the unprecedented scale of this sequencing project revealed that the size and diversity of immune repertoire are at least an order of magnitude larger than the estimation made from previous studies. This work is part of a broader effort supported by the Human Vaccines Project to decipher the components of the immune system, with the ultimate goal of understanding how to generate life-long protective immunity.

“Our most recent study puts us one step closer to truly understanding the extreme and beneficial diversity in the immune system, and identifying features of immunity that are shared by most people,” said James E. Crowe, Jr., director of the Vanderbilt Vaccine Center of Vanderbilt University Medical Center. “Now we continue to identify T cell receptors and antibodies that can be targets for vaccines and treatments that work more universally across populations.”

A primary aspect of the team’s ongoing research is focused on integrating the findings of these two studies toward the development of an effective vaccine against emerging and evolving threats. Crowe explained, “We are getting closer to being able to use these large databases of human immune molecules to rapidly discover natural molecules that can be used as biological drugs.”

Madhusudan Gujral, a senior bioinformatician at SDSC; Robert Sinkovits, SDSC’s director of scientific computing applications; and Cinque Soto, a Vanderbilt computational biologist and lead author of the study, share Crowe’s enthusiasm over the implications of this research and recognize the importance of access to high-performance computing resources, such as Comet, to make it possible.

This work was supported by a grant from the Human Vaccines Project and institutional funding from Vanderbilt University Medical Center. The authors acknowledge support from TN-CFAR grant (P30 AI110527). This work also used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF grant (ACI-1548562), and Comet supercomputer at SDSC, supported by NSF grant (ACI-1341698).

About SDSC

The San Diego Supercomputer Center (SDSC) is a leader and pioneer in high-performance and data-intensive computing, providing cyberinfrastructure resources, services, and expertise to the national research community, academia, and industry. Located on the UC San Diego campus, SDSC supports hundreds of multidisciplinary programs spanning a wide variety of domains, from astrophysics and earth sciences to disease research and drug discovery. In late 2020 SDSC will launch its newest National Science Foundation-funded supercomputer, Expanse. At over twice the performance of CometExpanse supports SDSC’s theme of ‘Computing without Boundaries’ with a data-centric architecture, public cloud integration, and state-of-the art GPUs for incorporating experimental facilities and edge computing.

About Vanderbilt Vaccine Center of Vanderbilt University Medical Center

The Vanderbilt Vaccine Center of Vanderbilt University Medical Center is committed to improving global health through fundamental research that fosters development and testing of new vaccines for infectious diseases. The Center’s international team of scientists and physicians focuses on work with major human pathogens, especially microbial threats that affect the most vulnerable subjects such as infants and the elderly.




Filters close

Showing results

110 of 4146
Newswise: Long-Term Impacts of COVID-19: Your Mental Health
Released: 25-Nov-2020 2:15 PM EST
Long-Term Impacts of COVID-19: Your Mental Health
Cedars-Sinai

The COVID-19 pandemic has shaped more than half a year of our lives, canceling plans, upending livelihoods and causing feelings of grief, stress and anxiety. And Cedars-Sinai mental health experts say the pandemic could be shaping our mental health well into the future.

Released: 25-Nov-2020 12:45 PM EST
SARS-CoV-2 mutations do not appear to increase transmissibility
University College London

None of the mutations currently documented in the SARS-CoV-2 virus appear to increase its transmissibility in humans, according to a study led by UCL researchers.

Newswise: COVID-19 vaccine candidate tested preclinically at UAB nears first clinical test in people
Released: 25-Nov-2020 11:05 AM EST
COVID-19 vaccine candidate tested preclinically at UAB nears first clinical test in people
University of Alabama at Birmingham

Maryland-based Altimmune Inc., a clinical stage biopharmaceutical company, has submitted an Investigational New Drug, or IND, application to the United States Food and Drug Administration to commence a Phase 1 clinical study of its single-dose intranasal COVID-19 vaccine candidate, AdCOVID.

Released: 25-Nov-2020 11:05 AM EST
BIDMC researchers reveal how genetic variations are linked to COVID-19 disease severity
Beth Israel Lahey Health

New research BIDMC-led sheds light on the genetic risk factors that make individuals more or less susceptible to severe COVID-19.

Newswise: blog-pandemic-scenario-planning-lg-feature2.jpg
Released: 25-Nov-2020 11:05 AM EST
Pandemic Ups Game on Scenario Planning in The Arts
Wallace Foundation

Researcher/Author of new toolkit and report seeks to help arts and culture organizations add scenario planning to their strategic toolbox

Released: 25-Nov-2020 10:30 AM EST
Young people's anxiety levels doubled during first COVID-19 lockdown, says study
University of Bristol

The number of young people with anxiety doubled from 13 per cent to 24 per cent, during the early stages of the COVID-19 pandemic and lockdown 1, according to new research from the University of Bristol.

Newswise: 249837_web.jpg
Released: 25-Nov-2020 10:20 AM EST
Tracking COVID-19 trends in hard-hit states
Louisiana State University

Currently, there are over 10 million confirmed cases and more than 240,000 casualties attributed to COVID-19 in the U.S.

Released: 25-Nov-2020 9:55 AM EST
More Health Systems Join National #MaskUp Campaign
Cleveland Clinic

Many more health systems are joining the national #MaskUp campaign encouraging Americans to stop the spread of COVID-19 by following safety guidelines. Over just a few days, another 19 health systems with hundreds of hospitals united with 100 health systems nationwide with hospitals numbering in the thousands. The public service campaign is critical to the health and well-being of all Americans. It is a plea from healthcare professionals everywhere: wear a mask and follow other precautions to save lives and help get our country back on its feet.

Newswise: delaterre_jpeg.jpg
Released: 25-Nov-2020 7:35 AM EST
Warwick scientists design model to predict cellular drug targets against Covid-19
University of Warwick

The covid-19 virus, like all viruses relies on their host for reproduction

access_time Embargo lifts in 2 days
Embargo will expire: 30-Nov-2020 10:00 AM EST Released to reporters: 24-Nov-2020 5:35 PM EST

A reporter's PressPass is required to access this story until the embargo expires on 30-Nov-2020 10:00 AM EST The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.


Showing results

110 of 4146

close
0.97717