X-ray Experiments Zero in on COVID-19 Antibodies

Scientists reveal potential coronavirus therapy using structural biology and the Advanced Light Source
Lawrence Berkeley National Laboratory
19-May-2020 10:00 AM EDT, by Lawrence Berkeley National Laboratory

Newswise — As scientists across the globe race to develop a vaccine against SARS-CoV-2, the coronavirus that causes COVID-19, an international team led by Davide Corti at Vir Biotechnology and David Veesler at the University of Washington has been working around the clock on a complementary approach – identifying neutralizing antibodies that could be used as a preventative treatment or as a post-exposure therapy. 

Their latest findings, which include data gathered at Berkeley National Laboratory’s (Berkeley Lab’s) Advanced Light Source (ALS), indicate that antibodies derived from SARS survivors could potently block entry of SARS-CoV-2 and other closely related coronaviruses into host cells. In a study published this week in Nature, the scientists note that the most promising candidate antibody is already on an accelerated development path toward clinical trials. 

“We are very excited to have found this potent neutralizing antibody that we hope will participate in ending the COVID-19 pandemic,” said Veesler. 

Leveraging the immune system 

Neutralizing antibodies are small proteins that inhibit pathogens by binding to the molecule or molecules that the microbe or virus uses to infect host cells. In humans and other animals, special immune cells produce neutralizing antibodies in response to infections, so that if the same pathogen is encountered again the body can eliminate it more quickly. Though natural neutralizing antibodies are typically only produced in the body for a limited time after the initial infection – past research with coronaviruses shows neutralizing antibodies last one or two years – scientists can manufacture pharmaceutical quantities of identical antibodies so long as they know the protein sequence. Mass-produced antibodies may then be given to people who do not yet have any of their own antibodies against that particular pathogen. Vaccines, on the other hand, induce the body to produce its own antibodies by introducing a carefully chosen part of a pathogen – typically a molecule from its outer surface, or a weakened or inert version of the entire pathogen. 

Soon after SARS-CoV-2 emerged in late 2019, Veesler and his colleagues began screening for potential neutralizing antibodies among those identified from SARS and MERS survivors in 2003 and 2013, respectively. Veesler’s structural biology team specializes in studying the protein machinery that pathogens use to infect hosts. The work is crucial for discovering what molecules can be targeted by treatments and vaccines. Their previous research on the SARS- and MERS-causing coronaviruses revealed that some neutralizing antibodies produced in response to those diseases were also effective against closely related coronaviruses. So, they suspected that several might inhibit SARS-CoV-2, which is very closely related to SARS-CoV. 

The screening yielded eight antibodies that can bind to the SARS-CoV-2 spike glycoprotein – a pyramid-shaped structure on the viral surface, composed of proteins with attached carbohydrates, that facilitates entry into the host cell. Multiple studies have suggested that the spike glycoprotein is the main target for both neutralizing antibodies and vaccines, and vaccines currently in development use a piece of this structure to prime the immune system. Further tests narrowed the field to reveal one SARS-CoV antibody, called S309, that successfully neutralizes SARS-CoV-2. 

Mapping the structure 

To understand how this antibody hinders the spike protein, and to gather the information necessary to reproduce it, the team behind the current study used cryo-electron microscopy (cryo-EM) at the University of Washington Arnold and Mabel Beckman cryoEM center and X-ray crystallography performed at ALS beamline 5.0.2., which is managed by the Berkeley Center for Structural Biology (BCSB). The ALS – a Department of Energy (DOE) user facility open to both industry and commercial teams – is a particle accelerator called a synchrotron that produces extremely bright beams of light from infrared to X-rays. The beams are directed into beamlines to support a wide range of scientific techniques, including protein crystallography. Operation of the ALS to conduct this research was supported in part by the U.S. Department of Energy National Virtual Biotechnology Laboratory, a consortium of DOE National laboratories with core capabilities relevant to the threats posed by COVID-19, and funded under the Coronavirus Aid, Relief, and Economic Security (CARES) Act. 

“David’s group is a more recent user of the BCSB beamlines,” said Marc Allaire, a biophysicist in Berkeley Lab’s Biosciences Area and head of the BCSB. “In 2018, they used the ALS to examine the spike glycoproteins of other coronaviruses and investigate how potential antibodies bind to them, and when it became clear that SARS-CoV-2 was a threat we were able to give the team priority time to use the beamlines.” The group used the ALS in early February and on March 31 they analyzed crystallized samples of S309. These samples are not infectious and posed no safety risk. 

“I have been in the field for quite a while and I am still fascinated by the power of protein crystallography,” Allaire added. In crystallography, a beam of X-ray light aimed at crystallized samples generates diffraction patterns. The intensities of the diffracted spots are then measured and used to reconstruct a 3D map of a molecule’s atomic structure. Beamline 5.0.2 is a specialized crystallography beamline that has been in operation for 20 years supporting a broad spectrum of structural biology studies and drug discovery. “We feel privileged to be contributing to David and Davide’s amazing effort and the promise of S309.”

Veesler and Corti’s work is funded by the National Institute of General Medical Sciences (NIGMS), the National Institute of Allergy and Infectious Diseases, a Pew Biomedical Scholars Award, and a Burroughs Wellcome Fund award. The Berkeley Center for Structural Biology is supported in part by the Howard Hughes Medical Institute and NIGMS.  

 

                                                                                               # # # 

Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 13 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab’s facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy's Office of Science.   DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.

SEE ORIGINAL STUDY




Filters close

Showing results

110 of 2530
Released: 13-Jul-2020 11:15 AM EDT
UTHealth joins study of blood pressure medication’s effect on improving COVID-19 outcomes
University of Texas Health Science Center at Houston

An interventional therapy aimed at improving survival chances and reducing the need for critical care treatment due to COVID-19 is being investigated by physicians at The University of Texas Health Science Center at Houston (UTHealth). The clinical trial is underway at Memorial Hermann and Harris Health System’s Lyndon B. Johnson Hospital.

Newswise: Drug that calms ‘cytokine storm’ associated with 45% lower risk of dying among COVID-19 patients on ventilators
Released: 13-Jul-2020 7:25 AM EDT
Drug that calms ‘cytokine storm’ associated with 45% lower risk of dying among COVID-19 patients on ventilators
Michigan Medicine - University of Michigan

Critically ill COVID-19 patients who received a single dose of a drug that calms an overreacting immune system were 45% less likely to die overall, and more likely to be out of the hospital or off a ventilator one month after treatment, compared with those who didn’t receive the drug, according to a new observational study.

10-Jul-2020 9:00 AM EDT
Long-term strategies to control COVID-19 pandemic must treat health and economy as equally important, argue researchers
University of Cambridge

Strategies for the safe reopening of low and middle-income countries (LMICs) from months of strict social distancing in response to the ongoing COVID-19 pandemic must recognise that preserving people’s health is as important as reviving the economy, argue an international team of researchers.

Released: 10-Jul-2020 3:05 PM EDT
Simple blood test can predict severity of COVID-19 for some patients
University of Texas Health Science Center at Houston

An early prognosis factor that could be a key to determining who will suffer greater effects from COVID-19, and help clinicians better prepare for these patients, may have been uncovered by researchers at The University of Texas Health Science Center at Houston (UTHealth). Results of the findings were published today in the International Journal of Laboratory Hematology.

Released: 10-Jul-2020 12:50 PM EDT
Genetic ‘fingerprints’ of first COVID-19 cases help manage pandemic
University of Sydney

A new study published in the world-leading journal Nature Medicine, reveals how genomic sequencing and mathematical modelling gave important insights into the ‘parentage’ of cases and likely spread of the disease in New South Wales.

Released: 10-Jul-2020 12:35 PM EDT
Our itch to share helps spread COVID-19 misinformation
Massachusetts Institute of Technology (MIT)

To stay current about the Covid-19 pandemic, people need to process health information when they read the news. Inevitably, that means people will be exposed to health misinformation, too, in the form of false content, often found online, about the illness.

Newswise: Pandemic Inspires Framework for Enhanced Care in Nursing Homes
Released: 10-Jul-2020 12:25 PM EDT
Pandemic Inspires Framework for Enhanced Care in Nursing Homes
University of Pennsylvania School of Nursing

As of May 2020, nursing home residents account for a staggering one-third of the more than 80,000 deaths due to COVID-19 in the U.S. This pandemic has resulted in unprecedented threats—like reduced access to resources needed to contain and eliminate the spread of the virus—to achieving and sustaining care quality even in the best nursing homes. Active engagement of nursing home leaders in developing solutions responsive to the unprecedented threats to quality standards of care delivery is required.

Newswise: General Electric Healthcare Chooses UH to Clinically 
Evaluate First-of-its-kind Imaging System
Released: 10-Jul-2020 12:15 PM EDT
General Electric Healthcare Chooses UH to Clinically Evaluate First-of-its-kind Imaging System
University Hospitals Cleveland Medical Center

University Hospitals Cleveland Medical Center physicians completed evaluation for the GE Healthcare Critical Care Suite, and the technology is now in daily clinical practice – flagging between seven to 15 collapsed lungs per day within the hospital. No one on the team could have predicted the onset of the COVID-19 pandemic, but this technology and future research with GEHC may enhance the capability to improve care for COVID-19 patients in the ICU. Critical Care Suite is now assisting in COVID and non-COVID patient care as the AMX 240 travels to intensive care units within the hospital.

Released: 10-Jul-2020 11:50 AM EDT
COVID-19 Can Be Transmitted in the Womb, Reports Pediatric Infectious Disease Journal
Wolters Kluwer Health: Lippincott Williams and Wilkins

A baby girl in Texas – born prematurely to a mother with COVID-19 – is the strongest evidence to date that intrauterine (in the womb) transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can occur, reports The Pediatric Infectious Disease Journal, the official journal of The European Society for Paediatric Infectious Diseases. The journal is published in the Lippincott portfolio by Wolters Kluwer.


Showing results

110 of 2530

close
1.23014