- 2019-06-17 11:00:12
- Article ID: 714420
Science Snapshots: new nitrides, artificial photosynthesis, and TMDC semiconductors
Groundbreaking Study Maps Out Paths to New Nitride Materials
Now, your chances of discovering new nitrides just got better with a groundbreaking Nature Materials study led by Berkeley Lab in close collaboration with the National Renewable Energy Laboratory (NREL) and a number of other institutions.
The study features a large, interactive stability map of the ternary nitrides, highlighting nitride compositions where experimental discovery is promising in blue. So far, the map has yielded the prediction of 244 new stable ternary nitride compounds.
“For ancient explorers, sailing into the unknown was a very risky endeavor, and in the same way, exploration of new chemical spaces can also be risky,” explained Wenhao Sun, lead author of the paper and staff scientist at Berkeley Lab. “If you don’t find a new material where you are looking, it can be a big waste of time and effort. Our chemical map can help to guide the exploratory synthesis of nitrides, just as maps helped to guide explorers, allowing them to navigate better.”
Read the full release from NREL here.
Media contact: Theresa Duque, [email protected], 510-495-2418
Here Comes the Sun: A New Framework for Artificial Photosynthesis By Theresa Duque
Scientists have long sought to mimic the process by which plants make their own fuel using sunlight, carbon dioxide, and water through artificial photosynthesis devices, but how exactly substances called catalysts work to generate renewable fuel remains a mystery.
Now, a PNAS study led by Berkeley Lab – and supported by state-of-the-art materials characterization at the Joint Center for Artificial Photosynthesis, powerful X-ray spectroscopy techniques at the Advanced Light Source, and superfast calculations performed at the National Energy Research Scientific Computing Center – has uncovered new insight into how to better control cobalt oxide, one of the most promising catalysts for artificial photosynthesis.
When molecules of cobalt oxide cubane, so named for its eight atoms forming a cube, are in solution, the catalytic units eventually collide into one another and react, and thus deactivate.
To hold the catalysts in place, and prevent these collisions, the researchers used a metal-organic framework as a scaffold. The technique is similar to how tetramanganese, a metal-oxygen catalyst in natural photosynthesis, protects itself from self-destruction by hiding in a protein pocket.
“Our study provides a clear, conceptual blueprint for engineering the next generation of energy-converting catalysts,” said Don Tilley, senior faculty scientist in Berkeley Lab’s Chemical Sciences Division and a co-corresponding author of the study.
You Don’t Have to Be Perfect for TMDCs to Shine Bright
By Theresa Duque
Atomically thin semiconductors known as TMDCs (transition metal dichalcogenides) could lead to devices that operate more efficiently than conventional semiconductors in light-emitting diodes, lasers, and solar cells. But these materials are hard to make without defects that dampen their performance.
Now, a study led by senior faculty scientist Ali Javey of Berkeley Lab – and published in the journal Science – has revealed that TMDCs’ efficiency is diminished not by defects, but by the extra free electrons.
In a previous study, the researchers used chemical treatments to improve TMDCs’ photoluminescence quantum yield, a ratio describing the amount of light generated by the material versus the amount of light absorbed. “But that’s not ideal because the treatments are unstable in subsequent processing,” said co-first author and graduate student researcher Shiekh Zia Uddin.
For the current study, the researchers discovered that when they applied an electrical voltage instead of a chemical treatment to TMDCs made of molybdenum disulfide and tungsten disulfide, the extra free electrons are removed from the material, resulting in a quantum yield of 100%.
“A quantum yield of 100% is unprecedented in inorganic TMDCs, said Der-Hsien Lien, postdoctoral researcher and co-first author. “This is an exciting result that shows it might be much easier and cheaper than previously thought to make useful optoelectronic devices from these materials.”
###

MORE NEWS FROM
Lawrence Berkeley National Laboratory

The Spintronics Technology Revolution Could Be Just a Hopfion Away
A research team co-led by Berkeley Lab has created and observed quasiparticles called 3D hopfions at the nanoscale (billionths of a meter) in a magnetic system. The discovery could advance high-density, high-speed, low-power, yet ultrastable magnetic memory "spintronics" devices.

Field guides: Argonne scientists bolster evidence of undiscovered particles or forces in Muon g-2 experiment
The first result from the Muon g-2 experiment points to the existence of undiscovered particles or forces. These findings could have major implications for future particle physics experiments and could lead to greater understanding of how the universe works.

Powerful polymers: ORNL study provides new insights into N95's COVID-19 filter efficiency
Research results on the N95 filter media, recently published in ACS Applied Polymer Materials, outline the science behind what led to ORNL's successful production of material on the CFTF's precursor production line.

Caught in the act: New data about COVID-19 virus's functions could aid in treatment designs
For the first time, a team of researchers has captured X-ray images of a critical enzyme of the COVID-19 virus performing its function. This discovery could improve design of new treatments against the disease.

Less than a nanometer thick, stronger and more versatile than steel
Scientists from Argonne National Laboratory, Northwestern University and the University of Florida report a breakthrough involving a material called borophane, a sheet of boron and hydrogen a mere two atoms in thickness.

Story Tips: Mighty Mo Material, Fueling Retooling, Goods on the Move, Doubling Concrete and Batteries Passport
ORNL story tips: Mighty Mo material, fueling retooling, goods on the move, doubling concrete and batteries passport

This hydrogen fuel machine could be the ultimate guide to self improvement
Scientists at Berkeley have uncovered an extraordinary self-improving property that transforms an ordinary semiconductor into a highly efficient and stable artificial photosynthesis device

April Snapshots
Science Snapshots from Berkeley Lab: X-rays accelerate battery R&D; infrared microscopy goes off grid; substrates support 2D tech

Quantum material's subtle spin behavior proves theoretical predictions
Using complementary computing calculations and neutron scattering techniques, researchers from the Department of Energy's Oak Ridge and Lawrence Berkeley national laboratories and the University of California, Berkeley, discovered the existence of an elusive type of spin dynamics in a quantum mechanical system.

Research confirms ingredient in household cleaner could improve fusion reactions
Research led by PPPL scientists provides new evidence that particles of boron, the main ingredient of Borax household cleaner, can coat internal components of doughnut-shaped plasma devices known as tokamaks and improve the efficiency of the fusion reactions.
Department of Energy to Provide $5 Million to Advance Workforce Development for High Energy Physics Instrumentation
Today, the U.S. Department of Energy (DOE) announced plans to provide $5 million to support a DOE traineeship program to address workforce needs in high energy physics instrumentation.
DOE Awards $110 Million to Small Businesses Pursuing Scientific, Clean Energy, and Climate Solutions
The U.S. Department of Energy (DOE) today announced awards totaling $110 million for diverse small businesses working on scientific, clean energy, and climate solutions for the American people.

Teachers Invited to Participate in Virtual Science Activities Night
Elementary and middle school teachers are invited to register now to participate in the annual Virginia Region II Teacher Night hosted by the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility on April 14, 2021. The fully virtual event will allow educators to see demonstrations of new methods for teaching physical science concepts and safely meet and interact with their colleagues, all while they pick up one recertification point from the comfort of their own homes. Advance registration is required, and the event is open to all upper elementary and middle school teachers of physical science.
DOE Announces $29 Million for Ultramodern Data Analysis Tools
The U.S. Department of Energy (DOE) today announced $29 million to develop new tools to analyze massive amounts of scientific information, including artificial intelligence, machine learning, and advanced algorithms.

Argonne's 2021 Maria Goeppert Mayer Fellows bring new energy, promise to their fields
The Department of Energy's Argonne National Laboratory is proud to welcome five new FY21 Maria Goeppert Mayer Fellows to campus, each chosen for their incredible promise in their respective fields.
DOE Announces $54 Million for Microelectronics Research to Power Next-Generation Technologies
The U.S. Department of Energy (DOE) today announced up to $54 million in new funding for the agency's National Laboratories to advance basic research in microelectronics. Microelectronics are a fundamental building block of modern devices such as laptops, smartphones, and home appliances, and hold the potential to power innovative solutions to challenges like the climate crisis and national security.
Department of Energy to Provide $12 Million for Research on Advanced Networking
Today, the U.S. Department of Energy (DOE) announced plans to provide up to $12 million for basic research on advanced 5G and quantum networking. Our modern life has been transformed by wireless and cellular networks, creating a world where humans all over the globe can communicate with each other instantaneously.
U.S. Department of Energy Announces $34.5 Million for Data Science and Computation Tools to Advance Climate Solutions
The U.S. Department of Energy (DOE) today announced up to $34.5 million to harness cutting-edge research tools for new scientific discoveries, including clean energy and climate solutions. Two new funding opportunities will support researchers using data science and computation-based methods--including artificial intelligence and machine learning--to tackle basic science challenges, advance clean energy technologies, improve energy efficiency, and predict extreme weather and climate patterns.
U.S. Department of Energy Announces $30M for Research to Secure Domestic Supply Chain of Critical Elements and Minerals
The U.S. Department of Energy (DOE) today announced up to $30 million to support scientific research that will ensure American businesses can reliably tap into a domestic supply of critical elements and minerals, such as lithium, cobalt and nickel, needed to produce clean energy technologies.
U.S. Department of Energy Announces $18 Million to Advance Particle Accelerator Technologies and Workforce Training
he U.S. Department of Energy (DOE) today announced $18 million in new funding to advance particle accelerator technology, a critical tool for discovery sciences and optimizing the way we treat medical patients, manufacture electronics and clean energy technologies, and defend the nation against security threats.

Harvesting Energy from Light using Bio-inspired Artificial Cells
Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

Engineering Living Scaffolds for Building Materials
Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

Excavating Quantum Information Buried in Noise
Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

How Electrons Move in a Catastrophe
Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

When Ions and Molecules Cluster
How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

Tune in to Tetrahedral Superstructures
Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

Tracing Interstellar Dust Back to the Solar System's Formation
This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

Investigating Materials that Can Go the Distance in Fusion Reactors
Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

Better 3-D Imaging of Tumors in the Breast with Less Radiation
In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

Microbes are Metabolic Specialists
Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.
Spotlight

Graduate students gather virtually for summer school at PPPL
Princeton Plasma Physics Laboratory

Virtual internships for physics students present challenges, build community
Princeton Plasma Physics Laboratory

Blocking the COVID-19 Virus's Exit Strategy
Brookhaven National Laboratory

From Nashville to New Hampshire, PPPL's student interns do research, attend classes and socialize from their home computers
Princeton Plasma Physics Laboratory

Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
Princeton Plasma Physics Laboratory

Chicago Public School students go beyond coding and explore artificial intelligence with Argonne National Laboratory
Argonne National Laboratory

Barbara Garcia: A first-generation college student spends summer doing research at PPPL
Princeton Plasma Physics Laboratory

Argonne organization's scholarship fund blazes STEM pathway
Argonne National Laboratory
Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
Brookhaven National Laboratory

From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns
Princeton Plasma Physics Laboratory

Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
Brookhaven National Laboratory

PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
Princeton Plasma Physics Laboratory

JSA Awards Graduate Fellowships for Research at Jefferson Lab
Thomas Jefferson National Accelerator Facility

ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
Argonne National Laboratory

Integrating Scientific Computing into Science Curricula
Brookhaven National Laboratory
Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
Department of Energy, Office of Science
DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
Department of Energy, Office of Science

Young Women's Conference in STEM seeks to change the statistics one girl at a time
Princeton Plasma Physics Laboratory

Students team with Argonne scientists and engineers to learn about STEM careers
Argonne National Laboratory

Lynbrook High wins 2019 SLAC Regional Science Bowl competition
SLAC National Accelerator Laboratory

Equipping the next generation for a technological revolution
Argonne National Laboratory

Chemistry intern inspired by Argonne's real-world science
Argonne National Laboratory

Argonne intern streamlines the beamline
Argonne National Laboratory

Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
Rensselaer Polytechnic Institute (RPI)

Innovating Our Energy Future
Oregon State University, College of Engineering

Physics graduate student takes her thesis research to a Department of Energy national lab
University of Alabama at Birmingham

"Model" students enjoy Argonne campus life
Argonne National Laboratory

Writing Code for a More Skilled and Diverse STEM Workforce
Brookhaven National Laboratory

New graduate student summer school launches at Princeton Plasma Physics Laboratory
Princeton Plasma Physics Laboratory

The Gridlock State
California State University (CSU) Chancellor's Office

Meet Jasmine Hatcher and Trishelle Copeland-Johnson
Brookhaven National Laboratory

Argonne hosts Modeling, Experimentation and Validation Summer School
Argonne National Laboratory
Undergraduate Students Extoll Benefits of National Laboratory Research Internships in Fusion and Plasma Science
Princeton Plasma Physics Laboratory

Students affected by Hurricane Maria bring their research to SLAC
SLAC National Accelerator Laboratory

Brookhaven Lab Pays Tribute to 2018 Summer Interns
Brookhaven National Laboratory

CSUMB Selected to Host Architecture at Zero Competition in 2019
California State University, Monterey Bay

From Hurricane Katrina Victim to Presidential Awardee: A SUNO Professor's Award-Winning Mentoring Efforts
Brookhaven National Laboratory

Department of Energy Invests $64 Million in Advanced Nuclear Technology
Rensselaer Polytechnic Institute (RPI)

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
Rensselaer Polytechnic Institute (RPI)

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
Brookhaven National Laboratory

High-School Students Studying Carbon-Based Nanomaterials for Cancer Drug Delivery Visit Brookhaven Lab's Nanocenter
Brookhaven National Laboratory

Argonne welcomes The Martian author Andy Weir
Argonne National Laboratory

UW Professor and Clean Energy Institute Director Daniel Schwartz Wins Highest U.S. Award for STEM Mentors
University of Washington

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
Illinois Mathematics and Science Academy (IMSA)

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
Rensselaer Polytechnic Institute (RPI)

Celebrating 40 years of empowerment in science
Argonne National Laboratory
Showing results
0-6 Of 2215