Cedars-Sinai

COVID-19: Study Shows Virus Can Infect Heart Cells in Lab Dish

Research, Led by Cedars-Sinai, Uses Stem Cell Technology to Learn How Coronavirus May Directly Attack Heart Muscle
30-Jun-2020 2:35 PM EDT, by Cedars-Sinai contact patient services

Newswise — LOS ANGELES (June 30, 2020) - A new study shows that SARS-CoV-2, the virus that causes COVID-19 (coronavirus), can infect heart cells in a lab dish, indicating it may be possible for heart cells in COVID-19 patients to be directly infected by the virus. The discovery, published today in the journal Cell Reports Medicine, was made using heart muscle cells that were produced by stem cell technology. 

Although many COVID-19 patients experience heart problems, the reasons are not entirely clear. Pre-existing cardiac conditions or inflammation and oxygen deprivation that result from the infection have all been implicated. But until now, there has been only limited evidence that the SARS-CoV-2 virus directly infects the individual muscle cells of the heart.

"We not only uncovered that these stem cell-derived heart cells are susceptible to infection by novel coronavirus, but that the virus can also quickly divide within the heart muscle cells," said Arun Sharma, PhD, a research fellow at the Cedars-Sinai Board of Governors Regenerative Medicine Institute and first and co-corresponding author of the study. "Even more significant, the infected heart cells showed changes in their ability to beat after 72 hours of infection."

The study also demonstrated that human stem cell-derived heart cells infected by SARS-CoV-2 change their gene expression profile, further confirming that the cells can be actively infected by the virus and activate innate cellular "defense mechanisms" in an effort to help clear out the virus.

While these findings are not a perfect replicate of what is happening in the human body, this knowledge may help investigators use stem cell-derived heart cells as a screening platform to identify new antiviral compounds that could alleviate viral infection of the heart, according to senior and co-corresponding author Clive Svendsen, PhD.

"This viral pandemic is predominately defined by respiratory symptoms, but there are also cardiac complications, including arrhythmias, heart failure and viral myocarditis," said Svendsen, director of the Regenerative Medicine Institute and professor of Biomedical Sciences and Medicine. "While this could be the result of massive inflammation in response to the virus, our data suggest that the heart could also be directly affected by the virus in COVID-19."

Researchers also found that treatment with an ACE2 antibody was able to blunt viral replication on stem cell-derived heart cells, suggesting that the ACE2 receptor could be used by SARS-CoV-2 to enter human heart muscle cells.

"By blocking the ACE2 protein with an antibody, the virus is not as easily able to bind to the ACE2 protein, and thus cannot easily enter the cell," said Sharma. "This not only helps us understand the mechanisms of how this virus functions, but also suggests therapeutic approaches that could be used as a potential treatment for SARS-CoV-2 infection."

The study used human induced pluripotent stem cells (iPSCs), a type of stem cell that is created in the lab from a person's blood or skin cells. IPSCs can make any cell type found in the body, each one carrying the DNA of the individual. Tissue-specific cells created in this way are used for research and for creating and testing potential disease treatments.

"This work illustrates the power of being able to study human tissue in a dish," said Eduardo Marbán, MD, PhD, executive director of the Smidt Heart Institute, who collaborated with Sharma and Svendsen on the study. "It is plausible that direct infection of cardiac muscle cells may contribute to COVID-related heart disease." 

The investigators also collaborated with co-corresponding author Vaithilingaraja Arumugaswami, DVM, PhD, an associate professor of molecular and medical pharmacology at the David Geffen School of Medicine at UCLA and member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research. Arumugaswami provided the novel coronavirus that was added to the heart cells, and UCLA researcher Gustavo Garcia Jr. contributed essential heart cell infection experiments.

"This key experimental system could be useful to understand the differences in disease processes of related coronaviral pathogens, SARS and MERS," Arumugaswami said.

These studies were performed under the following approvals: UCLA provided The Human Pluripotent Stem Cell Research Oversight (hPSCRO) #2020-004-01 for Human iPSC-derived cardiac and lung cells for disease modeling COVID-19, as well as protocol BUA-2020-015-003-A approved by the UCLA Institutional Biosafety Committee (IBC). 

Funding: Research from the Svendsen laboratory has been supported by the National Institutes of Health under award number 5UG3NS105703 and the Cedars-Sinai Board of Governors Regenerative Medicine Institute. Arun Sharma is supported by an institutional training grant from the NIH under award number T32 HL116273. 

DOI: https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(20)30068-9

Read more in Discoveries Magazine: The Race to Develop a Vaccine for COVID-19

SEE ORIGINAL STUDY




Filters close

Showing results

110 of 2451
Released: 2-Jul-2020 12:30 PM EDT
Tiny mineral particles are better vehicles for promising gene therapy
University of Wisconsin-Madison

University of Wisconsin–Madison researchers have developed a safer and more efficient way to deliver a promising new method for treating cancer and liver disorders and for vaccination — including a COVID-19 vaccine from Moderna Therapeutics that has advanced to clinical trials with humans.

Newswise: Newer variant of COVID-19–causing virus dominates global infections
Released: 2-Jul-2020 12:10 PM EDT
Newer variant of COVID-19–causing virus dominates global infections
Los Alamos National Laboratory

Research out today in the journal Cell shows that a specific change in the SARS-CoV-2 coronavirus virus genome, previously associated with increased viral transmission and the spread of COVID-19, is more infectious in cell culture.

Newswise: From Wuhan to San Diego—How a mutation on the novel coronavirus has come to dominate the globe
Released: 2-Jul-2020 12:05 PM EDT
From Wuhan to San Diego—How a mutation on the novel coronavirus has come to dominate the globe
La Jolla Institute for Immunology

Two variants of the novel coronavirus (SARS-CoV-2), called G614 and D614, were circulating in mid-March. A new study shows that the G version of the virus has come to dominate cases around the world. They report that this mutation does not make the virus more deadly, but it does help the virus copy itself, resulting in a higher viral load, or "titer," in patients.

Released: 2-Jul-2020 11:50 AM EDT
New Study Explains Potential Causes for “Happy Hypoxia” Condition in COVID-19 Patients
Loyola Medicine

A new research study provides possible explanations for COVID-19 patients who present with extremely low, otherwise life-threatening levels of oxygen, but no signs of dyspnea (difficulty breathing). This new understanding of the condition, known as silent hypoxemia or “happy hypoxia,” could prevent unnecessary intubation and ventilation in patients during the current and expected second wave of coronavirus.

Released: 2-Jul-2020 10:15 AM EDT
Stemming the Spread of Misinformation on Social Media
Association for Psychological Science

New research reported in the journal Psychological Science finds that priming people to think about accuracy could make them more discerning in what they subsequently share on social media.

29-Jun-2020 9:00 AM EDT
Coronavirus damages the endocrine system
Endocrine Society

People with endocrine disorders may see their condition worsen as a result of COVID-19, according to a new review published in the Journal of the Endocrine Society.

Released: 2-Jul-2020 8:50 AM EDT
Learn from the pandemic to prevent environmental catastrophe, scientists argue
University of Cambridge

• COVID-19 is comparable to climate and extinction emergencies, say scientists from the UK and US – all share features such as lagged impacts, feedback loops, and complex dynamics. • Delayed action in the pandemic cost lives and economic growth, just as it will with environmental crises – but on a scale “too grave to contemplate”.

Released: 1-Jul-2020 5:30 PM EDT
COVID-19 seed grants awarded to 7 ISU research projects
Iowa State University

Iowa State's COVID-19 Research Seed Grant program will support the initial stages of high-risk/high-reward projects that address the COVID-19 crisis.

Released: 1-Jul-2020 4:30 PM EDT
National Survey on COVID-19 Pandemic Shows Significant Mental Health Impact
Beth Israel Deaconess Medical Center

The findings of a nationwide survey assessing the effects of the COVID-19 pandemic on the emotional wellbeing of U.S. adults show 90 percent of survey respondents reported experiencing emotional distress related to the pandemic.


Showing results

110 of 2451

close
0.95164