Cedars-Sinai

COVID-19: Study Shows Virus Can Infect Heart Cells in Lab Dish

Research, Led by Cedars-Sinai, Uses Stem Cell Technology to Learn How Coronavirus May Directly Attack Heart Muscle
30-Jun-2020 2:35 PM EDT, by Cedars-Sinai contact patient services

Newswise — LOS ANGELES (June 30, 2020) - A new study shows that SARS-CoV-2, the virus that causes COVID-19 (coronavirus), can infect heart cells in a lab dish, indicating it may be possible for heart cells in COVID-19 patients to be directly infected by the virus. The discovery, published today in the journal Cell Reports Medicine, was made using heart muscle cells that were produced by stem cell technology. 

Although many COVID-19 patients experience heart problems, the reasons are not entirely clear. Pre-existing cardiac conditions or inflammation and oxygen deprivation that result from the infection have all been implicated. But until now, there has been only limited evidence that the SARS-CoV-2 virus directly infects the individual muscle cells of the heart.

"We not only uncovered that these stem cell-derived heart cells are susceptible to infection by novel coronavirus, but that the virus can also quickly divide within the heart muscle cells," said Arun Sharma, PhD, a research fellow at the Cedars-Sinai Board of Governors Regenerative Medicine Institute and first and co-corresponding author of the study. "Even more significant, the infected heart cells showed changes in their ability to beat after 72 hours of infection."

The study also demonstrated that human stem cell-derived heart cells infected by SARS-CoV-2 change their gene expression profile, further confirming that the cells can be actively infected by the virus and activate innate cellular "defense mechanisms" in an effort to help clear out the virus.

While these findings are not a perfect replicate of what is happening in the human body, this knowledge may help investigators use stem cell-derived heart cells as a screening platform to identify new antiviral compounds that could alleviate viral infection of the heart, according to senior and co-corresponding author Clive Svendsen, PhD.

"This viral pandemic is predominately defined by respiratory symptoms, but there are also cardiac complications, including arrhythmias, heart failure and viral myocarditis," said Svendsen, director of the Regenerative Medicine Institute and professor of Biomedical Sciences and Medicine. "While this could be the result of massive inflammation in response to the virus, our data suggest that the heart could also be directly affected by the virus in COVID-19."

Researchers also found that treatment with an ACE2 antibody was able to blunt viral replication on stem cell-derived heart cells, suggesting that the ACE2 receptor could be used by SARS-CoV-2 to enter human heart muscle cells.

"By blocking the ACE2 protein with an antibody, the virus is not as easily able to bind to the ACE2 protein, and thus cannot easily enter the cell," said Sharma. "This not only helps us understand the mechanisms of how this virus functions, but also suggests therapeutic approaches that could be used as a potential treatment for SARS-CoV-2 infection."

The study used human induced pluripotent stem cells (iPSCs), a type of stem cell that is created in the lab from a person's blood or skin cells. IPSCs can make any cell type found in the body, each one carrying the DNA of the individual. Tissue-specific cells created in this way are used for research and for creating and testing potential disease treatments.

"This work illustrates the power of being able to study human tissue in a dish," said Eduardo Marbán, MD, PhD, executive director of the Smidt Heart Institute, who collaborated with Sharma and Svendsen on the study. "It is plausible that direct infection of cardiac muscle cells may contribute to COVID-related heart disease." 

The investigators also collaborated with co-corresponding author Vaithilingaraja Arumugaswami, DVM, PhD, an associate professor of molecular and medical pharmacology at the David Geffen School of Medicine at UCLA and member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research. Arumugaswami provided the novel coronavirus that was added to the heart cells, and UCLA researcher Gustavo Garcia Jr. contributed essential heart cell infection experiments.

"This key experimental system could be useful to understand the differences in disease processes of related coronaviral pathogens, SARS and MERS," Arumugaswami said.

These studies were performed under the following approvals: UCLA provided The Human Pluripotent Stem Cell Research Oversight (hPSCRO) #2020-004-01 for Human iPSC-derived cardiac and lung cells for disease modeling COVID-19, as well as protocol BUA-2020-015-003-A approved by the UCLA Institutional Biosafety Committee (IBC). 

Funding: Research from the Svendsen laboratory has been supported by the National Institutes of Health under award number 5UG3NS105703 and the Cedars-Sinai Board of Governors Regenerative Medicine Institute. Arun Sharma is supported by an institutional training grant from the NIH under award number T32 HL116273. 

DOI: https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(20)30068-9

Read more in Discoveries Magazine: The Race to Develop a Vaccine for COVID-19

SEE ORIGINAL STUDY




Filters close

Showing results

110 of 2776
Newswise:Video Embedded protocol-needed-to-monitor-covid-19-disease-course
VIDEO
Released: 3-Aug-2020 9:05 PM EDT
Protocol needed to monitor COVID-19 disease course
University of Washington School of Medicine and UW Medicine

Patients with underlying conditions such as asthma or other lung problems should be checked on regularly by pulmonologists or primary-care doctors for at least six months. Some will need to be monitored for one to three years, according to a new opinion piece posted online today in The Lancet-Respiratory Medicine.

Newswise: UM Cardiology Researchers Studying How COVID-19 Affects the Heart
Released: 3-Aug-2020 3:10 PM EDT
UM Cardiology Researchers Studying How COVID-19 Affects the Heart
University of Miami Health System, Miller School of Medicine

COVID-19 is shown to impact the heart and, in some cases, have long-lasting cardiac effects. To discover the extent to which COVID-19 affects the heart, cardiologists and researchers with the University of Miami Miller School of Medicine have begun multiple studies.

Newswise: Tackling the Bioethics Challenges Raised by COVID-19
Released: 3-Aug-2020 3:05 PM EDT
Tackling the Bioethics Challenges Raised by COVID-19
University of Pennsylvania School of Nursing

The diverse situations experienced by health-care workers during the COVID-19 pandemic often present serious ethical challenges. From the allocation of resources and triage protocols to health-care worker and patient rights and the management of clinical trials, new ethical questions have come to the forefront of today’s global public health emergency.

Newswise: 239156_web.jpg
Released: 3-Aug-2020 2:50 PM EDT
New species of fungus sticking out of beetles named after the COVID-19 quarantine
Pensoft Publishers

A major comprehensive study on Herpomycetales and Laboulbeniales, two orders of unique ectoparasitic fungi associated with insects and other arthropods (class Laboulbeniomycetes) in Belgium and the Netherlands was published in the open-access, peer-reviewed scholarly journal MycoKeys.

Released: 3-Aug-2020 1:30 PM EDT
Consumer Behavior Has Shifted Significantly During Pandemic, Survey Reveals
Rensselaer Polytechnic Institute (RPI)

The COVID-19 pandemic has brought about an increase in telework and online commerce, and a significant decrease in the number of personal trips people are making. Understanding the effects of these rapid changes on the economy, supply chains, and the environment will be essential, as some of these behaviors will continue even after the pandemic has ended. Researchers from Rensselaer Polytechnic Institute recently presented the results of two sets of surveys they conducted in an effort to quantify and understand these unprecedented shifts.

access_time Embargo lifts in 2 days
Embargo will expire: 5-Aug-2020 12:05 AM EDT Released to reporters: 3-Aug-2020 12:25 PM EDT

A reporter's PressPass is required to access this story until the embargo expires on 5-Aug-2020 12:05 AM EDT The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

31-Jul-2020 4:05 PM EDT
The effects of COVID-19 on emergency visits, hospitalizations
Mayo Clinic

COVID-19 swept into the U.S., hospitals across the country have reported that their emergency departments are emptying out. In a new study published Monday, Aug. 3, in JAMA Internal Medicine, a team of researchers from multiple institutions provides insights into this phenomenon.

Newswise: Important Dementia Studies Continuing at UK Despite Ongoing COVID-19 Pandemic
Released: 3-Aug-2020 10:20 AM EDT
Important Dementia Studies Continuing at UK Despite Ongoing COVID-19 Pandemic
University of Kentucky

The COVID-19 pandemic brought many things to a screeching halt and continues to impact our daily lives. However, important research at the University of Kentucky’s Sanders-Brown Center on Aging (SBCoA) is continuing under extreme caution and deep dedication. A monumental study in the field of dementia research is set to get underway in the coming weeks at UK.


Showing results

110 of 2776

close
1.83994