Newswise — A larger placenta during pregnancy could lead to larger bones in the children, a new Southampton study has shown.

Researchers at the Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, studied 518 children in the Avon Longitudinal Study of Parents and Children (ALSPAC) who underwent bone scans at nine, 15 and 17 years old. Measurements such as thickness, volume and weight, were also taken from the mothers’ placenta.

The Southampton group, working with colleagues at the University of Bristol, found that greater placental size at birth was associated with larger bones at each age in childhood.

The study, published in the Journal of Bone and Mineral Research, found that the relationship between the placenta and offspring bone remained robust even after adjusting for factors such as the child’s height and weight and pubertal status.

The Southampton team believe this latest research offers new insights into earlier observations linking maternal factors in pregnancy with offspring bone health. Larger bones in early life are likely to lead to larger, stronger bones in older adulthood, which reduces the risk of osteoporosis and broken bones in later life. However, more research is needed to understand the more detailed mechanisms underlying associations between placenta size/function and offspring bone mass, the team says.

Professor Nicholas Harvey, Professor of Rheumatology and Clinical Epidemiology, who led the research in Southampton, commented: “Whilst there are many factors which are likely to influence placental size and function, and importantly, we don’t know as yet whether a larger placenta actually causes the greater offspring bone mass, these findings really help us to understand the possible mechanisms whereby factors such as maternal diet, smoking, physical activity and vitamin D status may influence offspring bone development.”

“This work builds on our previous findings from the Southampton Women’s Survey, and demonstrates that positive associations between placental size and offspring bone size are maintained even through puberty.”

Professor Cyrus Cooper, Professor of Rheumatology and Director of the MRC Lifecourse Epidemiology Unit, added, “This work forms part of a larger programme of research seeking to develop interventions in early life aimed at optimising bone development and reducing the risk of osteoporotic fracture in older age. Confirmation of our earlier Southampton findings in the Bristol cohort is testament to the close working between Southampton and Bristol collaborators, and demonstrates the clear benefit to UK science from such cross-cohort investigations.”

1. A copy of the paper entitled: Placental size is associated differentially with postnatal bone size and density is available from Media Relations upon request. Doi: 10.1002/jbmr.28402. Bone assessments were carried out by dual energy x-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT).3. The Medical Research Council is at the forefront of scientific discovery to improve human health. Founded in 1913 to tackle tuberculosis, the MRC now invests taxpayers’ money in some of the best medical research in the world across every area of health. Thirty-one MRC-funded researchers have won Nobel prizes in a wide range of disciplines, and MRC scientists have been behind such diverse discoveries as vitamins, the structure of DNA and the link between smoking and cancer, as well as achievements such as pioneering the use of randomised controlled trials, the invention of MRI scanning, and the development of a group of antibodies used in the making of some of the most successful drugs ever developed. Today, MRC-funded scientists tackle some of the greatest health problems facing humanity in the 21st century, from the rising tide of chronic diseases associated with ageing to the threats posed by rapidly mutating micro-organisms. www.mrc.ac.uk 4. Through world-leading research and enterprise activities, the University of Southampton connects with businesses to create real-world solutions to global issues. Through its educational offering, it works with partners around the world to offer relevant, flexible education, which trains students for jobs not even thought of. This connectivity is what sets Southampton apart from the rest; we make connections and change the world. http://www.southampton.ac.uk/ http://www.southampton.ac.uk/weareconnected#weareconnectedFor more information:Becky Attwood, Media Relations Officer, Tel: 02380 592128, Mob: 07342060429, Email: [email protected]

MEDIA CONTACT
Register for reporter access to contact details
CITATIONS

Journal of Bone and Mineral Research Doi: 10.1002/jbmr.2840