Newswise — Northeastern University researchers Pran Nath, Daniel Feldman and Zuowei Liu have shown that the discovery of a proposed particle, dubbed the Stueckelberg Z prime, is possible utilizing the data being collected in the CDF and DO experiments at the Fermilab Tevatron. The Stueckelberg Z prime particle, originally proposed by Boris Kors currently at CERN, Geneva, Switzerland and Pran Nath at Northeastern University in 2004, is so narrow that questions had been raised as to whether or not it could be detected. This new research, published in the July issue of Physical Review Letters, confirms that it can. The results are of importance because the discovery of this particle would provide a clue to the nature of physics beyond the Standard Model and a possible link with string theory.
"It is exciting to know that the discovery of the proposed particle at colliders is indeed possible," said Pran Nath, Matthews Distinguished University Professor of Physics at Northeastern University. "Physicists are always looking for what is next, what will lie beyond the Standard Model. These findings point us in the direction of those answers."
Because of its extreme narrowness, the Stueckelberg Z prime particle resembles the J/Psi (charmonium) particle, whose simultaneous discovery in 1974 by Burton Richter and Samuel Ting earned them the 1976 Nobel Prize in Physics. However, unlike the J/Psi which is a bound state, the new particle is not a bound state but a proposed new fundamental building block of matter. What sets the new Z prime particle apart from all others is the mechanism by which it gains mass.
While in the Standard Model particles such as the W and Z bosons gain mass by the Higgs phenomena, the new Z prime particle gains mass by the Stueckelberg mechanism proposed by the Swiss mathematician and physicist Ernst Carl Gerlach Stueckelberg in 1938. While the Stueckelberg mechanism arises naturally in string theory, Kors and Nath were the first to successfully utilize it in building a model of particle physics.
"If the Stueckelberg Z prime particle were to be discovered, it could signify a new kind of physics altogether, a new regime so to speak," said Nath. "The prospect is quite exciting."
About Northeastern:Northeastern University, located in the heart of Boston, Massachusetts, is a world leader in practice-oriented education and recognized for its expert faculty and first-rate academic and research facilities. Northeastern integrates challenging liberal arts and professional studies with the nation's largest cooperative education program. Through co-op, Northeastern undergraduates alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, giving them nearly two years of professional experience upon graduation. The majority of Northeastern graduates receive a job offer from a co-op employer. Cited for excellence four years running by U.S. News & World Report, Northeastern has quickly moved up into the top tier rankings-an impressive 35 spots in four years. In addition, Northeastern was named a top college in the 2006 edition of the Princeton Review's annual "Best Colleges" issue. For more information, please visit http://www.northeastern.edu.
MEDIA CONTACT
Register for reporter access to contact detailsCITATIONS
Physical Review Letters (Jul-2006)