Abstract: Engineering clinically-relevant musculoskeletal tissues at a human scale is a considerable challenge. Developmentally-inspired scaffold-free approaches for engineering cartilage tissues have shown great promise in recent years, enabling the generation of highly biomimetic tissues. Despite the relative success of these approaches, the absence of a supporting scaffold or hydrogel creates challenges in the development of large scale tissues. Combining numerous scaled-down tissue units (herein termed microtissues) into a larger macrotissue represents a promising strategy to address this challenge. The overall success of such approaches, however, relies on the development of strategies to support the robust and consistent chondrogenic differentiation of clinically relevant cell sources such as mesenchymal stem/stromal cells (MSCs) within microwell arrays to biofabricate numerous microtissues rich in cartilage-specific extracellular matrix components. In this paper, we first describe a simple method to manufacture cartilage microtissues at various scales using novel microwell array stamps. This system allows the rapid and reliable generation of cartilage microtissues, and can be used as a platform to study microtissue phenotype and development. Based on the unexpected discovery that Endothelial Growth Medium (EGM) enhanced MSC aggregation and chondrogenic capacity within the microwell arrays, this work also sought to identify soluble factors within the media capable of supporting robust differentiation using heterogeneous MSC populations. Hydrocortisone was found to be the key factor within EGM that enhanced the chondrogenic capacity of MSCs within these microwell arrays. This strategy represents a promising means of generating large numbers of high-quality, scaffold-free cartilage microtissues for diverse biofabrication applications.

Journal Link: 10.1101/2022.09.07.507002 Journal Link: Publisher Website Journal Link: Download PDF Journal Link: Google Scholar