X
X
X

Chemists ID Catalytic 'Key' for Converting CO2 to Methanol

Results from experiments and computational modeling studies that definitively identify the "active site" of a catalyst commonly used for making methanol from CO2 will guide the design of improved catalysts for transforming this pollutant to useful chemicals.

Cryo-Electron Microscopy Achieves Unprecedented Resolution Using New Computational Methods

Cryo-electron microscopy (cryo-EM)--which enables the visualization of viruses, proteins, and other biological structures at the molecular level--is a critical tool used to advance biochemical knowledge. Now Berkeley Lab researchers have extended cryo-EM's impact further by developing a new computational algorithm instrumental in constructing a 3-D atomic-scale model of bacteriophage P22 for the first time.

New Study Maps Space Dust in 3-D

A new Berkeley Lab-led study provides detailed 3-D views of space dust in the Milky Way, which could help us understand the properties of this dust and how it affects views of distant objects.

Single-Angle Ptychography Allows 3D Imaging of Stressed Materials

Scientists have used a new X-ray diffraction technique called Bragg single-angle ptychography to get a clear picture of how planes of atoms shift and squeeze under stress.

New Feedback System Could Allow Greater Control Over Fusion Plasma

A physicist has created a new system that will let scientists control the energy and rotation of plasma in real time in a doughnut-shaped machine known as a tokamak.

Towards Super-Efficient, Ultra-Thin Silicon Solar Cells

Researchers from Ames Laboratory used supercomputers at NERSC to evaluate a novel approach for creating more energy-efficient ultra-thin crystalline silicon solar cells by optimizing nanophotonic light trapping.

Study IDs Link Between Sugar Signaling and Regulation of Oil Production in Plants

UPTON, NY--Even plants have to live on an energy budget. While they're known for converting solar energy into chemical energy in the form of sugars, plants have sophisticated biochemical mechanisms for regulating how they spend that energy. Making oils costs a lot. By exploring the details of this delicate energy balance, a group of scientists from the U.

High-Energy Electrons Probe Ultrafast Atomic Motion

A new technique synchronized high-energy electrons with an ultrafast laser pulse to probe how vibrational states of atoms change in time.

Rare Earth Recycling

A new energy-efficient separation of rare earth elements could provide a new domestic source of critical materials.

Two-Dimensional MXene Materials Get Their Close-Up

Researchers have long sought electrically conductive materials for economical energy-storage devices. Two-dimensional (2D) ceramics called MXenes are contenders.


Three SLAC Employees Awarded Lab's Highest Honor

At a March 7 ceremony, three employees of the Department of Energy's SLAC National Accelerator Laboratory were awarded the lab's highest honor ­- the SLAC Director's Award.

Dan Sinars Represents Sandia in First Energy Leadership Class

Dan Sinars, a senior manager in Sandia National Laboratories' pulsed power center, which built and operates the Z facility, is the sole representative from a nuclear weapons lab in a new Department of Energy leadership program that recently visited Sandia.

ORNL, HTS International Corporation to Collaborate on Manufacturing Research

HTS International Corporation and the Department of Energy's Oak Ridge National Laboratory have signed an agreement to explore potential collaborations in advanced manufacturing research.

Jefferson Lab Director Honored with Energy Secretary Award

Hugh Montgomery, director of the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab), was awarded The Secretary's Distinguished Service Award by the Secretary of Energy earlier this year.

New Projects to Make Geothermal Energy More Economically Attractive

Geothermal energy, a clean, renewable source of energy produced by the heat of the earth, provides about 6 percent of California's total power. That number could be much higher if associated costs were lower. Now scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have launched two California Energy Commission-funded projects aimed at making geothermal energy more cost-effective to deploy and operate.

Southern Research Project Advances Novel CO2 Utilization Strategy

The U.S. Department of Energy's Office of Fossil Energy has awarded Southern Research nearly $800,000 for a project that targets a more cost-efficient and environmentally friendly method of producing some of the most important chemicals used in manufacturing.

Harker School Wins 2017 SLAC Regional Science Bowl Competition

After losing its first match of the day to the defending champions, The Harker School's team won 10 consecutive rounds to claim victory in the annual SLAC Regional DOE Science Bowl on Saturday, Feb. 11.

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative

Alexander brings extensive management and leadership experience in computational science research to the position.

Kalinin, Paranthaman Elected Materials Research Society Fellows

Two researchers at Oak Ridge National Laboratory, Sergei Kalinin and Mariappan Parans Paranthaman, have been elected fellows of the Materials Research Society.

Two PNNL Researchers Elected to Membership in the National Academy of Engineering

Two scientists at the Pacific Northwest National Laboratory will become members of the prestigious National Academy of Engineering.


High-Energy Electrons Probe Ultrafast Atomic Motion

A new technique synchronized high-energy electrons with an ultrafast laser pulse to probe how vibrational states of atoms change in time.

Rare Earth Recycling

A new energy-efficient separation of rare earth elements could provide a new domestic source of critical materials.

Modeling the "Flicker" of Gluons in Subatomic Smashups

A new model identifies a high degree of fluctuations in the glue-like particles that bind quarks within protons as essential to explaining proton structure.

Rare Nickel Atom Has "Doubly Magic" Structure

Supercomputing calculations confirm that rare nickel-78 has unusual structure, offering insights into supernovas.

Microbial Activity in the Subsurface Contributes to Greenhouse Gas Fluxes

Natural carbon dioxide production from deep subsurface soils contributes significantly to emissions, even in a semiarid floodplain.

Stretching a Metal Into an Insulator

Straining a thin film controllably allows tuning of the materials' magnetic, electronic, and catalytic properties, essential for new energy and electronic devices.

How Moisture Affects the Way Soil Microbes Breathe

Study models soil-pore features that hold or release carbon dioxide.

ARM Data Is for the Birds

Scientists use LIDAR and radar data to study bird migration patterns, thanks to the Atmospheric Radiation Measurement (ARM) Climate Research Facility.

The Future of Coastal Flooding

Better storm surge prediction capabilities could help reduce the impacts of extreme weather events, such as hurricanes.

Estimating Global Energy Use for Water-Related Processes

Scientists find that water-related energy consumption is increasing across the globe, with pronounced differences across regions and sectors.


Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park




Chemists Explain the Molecular Workings of Promising Fuel Cell Electrolyte

Article ID: 588293

Released: 2012-04-19 08:55:00

Source Newsroom: New York University

James Devitt

212.998.6808

james.devitt@nyu.edu

Researchers from New York University and the Max Planck Institute in Stuttgart reveal how protons move in phosphoric acid in a Nature Chemistry study that sheds new light on the workings of a promising fuel cell electrolyte.

Phosphoric acid fuel cells were the first modern fuel cell types to be used commercially and have found application as both stationary and automotive power sources. Their high efficiency as combined power and heat generators make them attractive targets for further development. In the cell, phosphoric acid functions as the medium (or “electrolyte”) that transports protons produced in the reaction that decomposes the fuel across the cell. Indeed, phosphoric acid has the highest proton conductivity of any known substance, but what makes it work so well as a proton conductor has remained a mystery.

Efficient proton transport across a fuel cell is just one of several technical challenges that must be tackled before this technology can be applied on a massive scale. The key to this problem is the identification of a suitable electrolyte material. Hydrated polymers are often employed, but these must operate at temperatures below the boiling point of water, which limits their utility. Phosphoric acid fuel cells and other phosphate-based cells, by contrast, can be operated at substantially higher temperatures.

Chemists have sought a molecular level understanding of proton conduction phenomena for more than 200 years. The earliest studies concerned water and can be traced back to a landmark paper in 1806 by the German chemist Theodor von Grotthuss. In this paper, Grotthuss suggested that excess protons in aqueous acids are not themselves transported, but rather it is the chemical bonding pattern they create that is transported via a series of short hops of protons between neighboring water molecules. Such hops occur through the hydrogen bonds that connect water molecules into a network.

One can liken this process to an old-time fire brigade in which each fireman in a long line holds a bucket of water in his left hand. A fireman at the end of the line receives a new water bucket in his right hand, so in order to make the transport of water down the line as efficient as possible, he passes the bucket in his left hand to the right hand of his neighbor. The neighbor, who now holds buckets in his left and right hands, passes the bucket in his left hand to the right hand of the next fireman in the line, and the process continues like this until the person at the opposite end of the line holds two buckets. Overall, water is transported down the line, but it is not the same bucket being passed in each transfer.

Of course, the transport of excess protons in water is not this simple—it involves complex rearrangements of the hydrogen bonds at each transfer step to accommodate the diffusing chemical bonding pattern. Because of this, proton transport in water appears to be a step-wise process. Water faces other limitations—it cannot function as an intrinsic proton conductor but must have protons added to it to create aqueous acid solutions before any noticeable proton transport occurs.

The Nature Chemistry study contrasted proton conduction in phosphoric acid with excess protons in aqueous solutions. In their work, the researchers carried out a type of “computerized experiment” or “simulation” in which no prior knowledge of the chemical processes is required. The only input is the atomic composition of phosphoric acid (hydrogen, oxygen, and phosphorus). Based on this input, the atoms’ motion in time is determined from the fundamental laws of physics. In this way, the proton conduction mechanism can be allowed to unfold and be discovered directly from the simulation output.

Their results showed that proton motion in phosphoric acid is a highly cooperative process that can involve as many as five phosphoric acid molecules at a time serving as a kind of temporary “proton wire” or chain. The basic findings are:

• In contrast to the step-wise mechanism that operates in water, phosphoric acid transfers protons in a more “streamlined” fashion, in which protons move in a concerted manner along one of these temporary wires.

• Eventually, it becomes energetically unfavourable for this wire to sustain this proton motion. Hence, the system then seeks to resolve this unfavourable condition by breaking one of the hydrogen bonds in this temporary wire and forming a new wire arrangement with other nearby phosphoric acid molecules. New wire arrangements persist until they can no longer sustain the proton motion in them, at which point they break and new wires are formed. This process of forming and breaking the short wires allows for a steady proton current and overall high proton conductivity.

Although phosphoric acid has its advantages in fuel cell applications, phosphoric acid fuel cells still are not as powerful as other types of cells and, as pure power sources, are not as efficient. However, an understanding of the basic proton transport mechanism can help improve the design of such cells or suggest other phosphate based materials that could serve as the proton carrier.

The study’s authors were: Mark Tuckerman, a professor in NYU’s Department of Chemistry as well as Linas Vilčiauskas, Gabriel Bester, and Klaus-Dieter Kreuer from the Max Planck Institute and Stephen J. Paddison of the University of Tennessee, Knoxville.

# # #