Doe Science news source

The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2012-08-21 14:00:00
  • Article ID: 592810

Self-Charging Power Cell Converts and Stores Energy

  • Credit: Georgia Tech Photo: Gary Meek

    Georgia Tech researcher Zhong Lin Wang holds the components of a new self-charging power cell that uses piezoelectric materials to directly convert mechanical energy to chemical energy. The chemical energy can be released as electricity.

  • Credit: Georgia Tech Photo: Gary Meek

    Georgia Tech professor Zhong Lin Wang (left) and Ph.D. candidate Sihong Wang hold components of a new self-charging power cell that uses piezoelectric materials to directly convert mechanical energy to chemical energy. The chemical energy can be released as electricity.

  • Credit: Georgia Tech Photo: Gary Meek

    Georgia Tech researcher Zhong Lin Wang holds the components of a new self-charging power cell that uses piezoelectric materials to directly convert mechanical energy to chemical energy. The chemical energy can be released as electricity.

Researchers have developed a self-charging power cell that directly converts mechanical energy to chemical energy, storing the power until it is released as electrical current. By eliminating the need to convert mechanical energy to electrical energy for charging a battery, the new hybrid generator-storage cell utilizes mechanical energy more efficiently than systems using separate generators and batteries.

At the heart of the self-charging power cell is a piezoelectric membrane that drives lithium ions from one side of the cell to the other when the membrane is deformed by mechanical stress. The lithium ions driven through the polarized membrane by the piezoelectric potential are directly stored as chemical energy using an electrochemical process.

By harnessing a compressive force, such as a shoe heel hitting the pavement from a person walking, the power cell generates enough current to power a small calculator. A hybrid power cell the size of a conventional coin battery can power small electronic devices – and could have military applications for soldiers who might one day recharge battery-powered equipment as they walked.

“People are accustomed to considering electrical generation and storage as two separate operations done in two separate units,” said Zhong Lin Wang, a Regents professor in the School of Materials Science and Engineering at the Georgia Institute of Technology. “We have put them together in a single hybrid unit to create a self-charging power cell, demonstrating a new technique for charge conversion and storage in one integrated unit.”

The research was reported Aug. 9, 2012 in the journal Nano Letters. The research was supported by the Defense Advanced Research Projects Agency (DARPA), the U.S. Air Force, the U.S. Department of Energy, the National Science Foundation, and the Knowledge Innovation Program of the Chinese Academy of Sciences.

The power cell consists of a cathode made from lithium-cobalt oxide (LiCoO2) and an anode consisting of titanium dioxide (TiO2) nanotubes grown atop a titanium film. The two electrodes are separated by a membrane made from poly(vinylidene fluoride) (PVDF) film, which generates a piezoelectric charge when placed under strain. When the power cell is mechanically compressed, the PVDF film generates a piezoelectric potential that serves as a charge pump to drive the lithium ions from the cathode side to the anode side. The energy is then stored in the anode as lithium-titanium oxide.

Charging occurs in cycles with the compression of the power cell creating a piezopotential that drives the migration of lithium ions until a point at which the chemical equilibrium of the two electrodes are re-established and the distribution of lithium ions can balance the piezoelectric fields in the PVDF film. When the force applied to the power cell is released, the piezoelectric field in the PVDF disappears, and the lithium ions are kept at the anode through a chemical process.

The charging cycle is completed through an electrochemical process that oxidizes a small amount of lithium-cobalt oxide at the cathode to Li1-xCoO2 and reduces a small amount of titanium dioxide to LixTiO2 at the anode. Compressing the power cell again repeats the cycle.

When an electrical load is connected between the anode and cathode, electrons flow to the load, and the lithium ions within the cell flow back from the anode side to the cathode side.

Using a mechanical compressive force with a frequency of 2.3 Hertz, the researchers increased the voltage in the power cell from 327 to 395 millivolts in just four minutes. The device was then discharged back to its original voltage with a current of one milliamp for about two minutes. The researchers estimated the stored electric capacity of the power cell to be approximately 0.036 milliamp-hours.

So far, Wang and his research team – which included Xinyu Xue, Sihong Wang, Wenxi Guo and Yan Zhang – have built and tested more than 500 of the power cells. Wang estimates that the generator-storage cell will be as much as five times more efficient at converting mechanical energy to chemical energy for as a two-cell generator-storage system.

Much of the mechanical energy applied to the cells is now consumed in deforming the stainless steel case the researchers are using to house their power cell. Wang believes the power storage could be boosted by using an improved case.

“When we improve the packaging materials, we anticipate improving the overall efficiency,” he said. “The amount of energy actually going into the cell is relatively small at this stage because so much of it is consumed by the shell.”

Beyond the efficiencies that come from directly converting mechanical energy to chemical energy, the power cell could also reduce weight and space required by separate generators and batteries. The mechanical energy could come from walking, the tires of a vehicle hitting the pavement, or by harnessing ocean waves or mechanical vibrations.

“One day we could have a power package ready to use that takes advantage of this hybrid approach,” Wang said. “Almost anything that involves mechanical action could provide the strain needed for charging. People walking could be generating electricity as they move.”

This research was supported by DARPA (HR0011-09-C-0142); the U.S. Air Force, the U.S. Department of Energy, Office of Basic Energy Sciences (DE-FG02-07ER46394), the National Science Foundation (CMMI-0403671), and the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-M13). The content is solely the responsibility of the authors and does not necessarily represent the official views of DARPA, the U.S. Air Force, the Department of Energy or the National Science Foundation.

Citation: Xinyu Xue, Sihong Wang, Wenxi Guo, Yan Zhang and Zhong Lin Wang, Hybridizing Energy Conversion and Storage in a Mechanical-to-Electrochemical Process for Self-Charging Power Cell, Nano Letters. DOI: 10.1021/nl302879t

Research News & Publications Office

Georgia Institute of Technology

75 Fifth Street, N.W., Suite 309

Atlanta, Georgia 30308 USA

Media Relations Contact: John Toon (404-894-6986)(jtoon@gatech.edu).

Writer: John Toon

X
X
X
  • Filters

  • × Clear Filters

Microbe Mystery Solved: What Happened to the Deepwater Horizon Oil Plume

The Deepwater Horizon oil spill in the Gulf of Mexico in 2010 is one of the most studied spills in history, yet scientists haven't agreed on the role of microbes in eating up the oil. Now a research team at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has identified all of the principal oil-degrading bacteria as well as their mechanisms for chewing up the many different components that make up the released crude oil.

New Class of 'Soft' Semiconductors Could Transform HD Displays

New research by Berkeley Lab scientists could help usher in a new generation of high-definition displays, optoelectronic devices, photodetectors, and more. They have shown that a class of "soft" semiconductors can be used to emit multiple, bright colors from a single nanowire at resolutions as small as 500 nanometers. The work could challenge quantum dot displays that rely upon traditional semiconductor nanocrystals to emit light.

Could This Strategy Bring High-Speed Communications to the Deep Sea?

A new strategy for sending acoustic waves through water could potentially open up the world of high-speed communications to divers, marine research vessels, remote ocean monitors, deep sea robots, and submarines. By taking advantage of the dynamic rotation generated as the acoustic wave travels, also known as its orbital angular momentum, Berkeley Lab researchers were able to pack more channels onto a single frequency, effectively increasing the amount of information capable of being transmitted.

2-D Material's Traits Could Send Electronics R&D Spinning in New Directions

Researchers created an atomically thin material at Berkeley Lab and used X-rays to measure its exotic and durable properties that make it a promising candidate for a budding branch of electronics known as "spintronics."

Manipulating Earth-Abundant Materials to Harness the Sun's Energy

New material based on common iron ore can help turn intermittent sunlight and water into long-lasting fuel.

Ames Lab Scientists' Surprising Discovery: Making Ferromagnets Stronger by Adding Non-Magnetic Element

Researchers at the U.S. Department of Energy's Ames Laboratory discovered that they could functionalize magnetic materials through a thoroughly unlikely method, by adding amounts of the virtually non-magnetic element scandium to a gadolinium-germanium alloy. It was so unlikely they called it a "counterintuitive experimental finding" in their published work on the research.

Cut U.S. Commercial Building Energy Use 29% with Widespread Controls

The U.S. could slash its energy use by the equivalent of what is currently used by 12 to 15 million Americans if commercial buildings fully used energy-efficiency controls nationwide.

How a Single Chemical Bond Balances Cells Between Life and Death

With SLAC's X-ray laser and synchrotron, scientists measured exactly how much energy goes into keeping a crucial chemical bond from triggering a cell's death spiral.

New Efficient, Low-Temperature Catalyst for Converting Water and CO to Hydrogen Gas and CO2

Scientists have developed a new low-temperature catalyst for producing high-purity hydrogen gas while simultaneously using up carbon monoxide (CO). The discovery could improve the performance of fuel cells that run on hydrogen fuel but can be poisoned by CO.

Study Sheds Light on How Bacterial Organelles Assemble

Scientists at Berkeley Lab and Michigan State University are providing the clearest view yet of an intact bacterial microcompartment, revealing at atomic-level resolution the structure and assembly of the organelle's protein shell. This work can help provide important information for research in bioenergy, pathogenesis, and biotechnology.


  • Filters

  • × Clear Filters

The Electrochemical Society and Toyota North America Announce 2017-2018 Fellowship Winners for Projects in Green Energy Technology

The ECS Toyota Young Investigator Fellowship Selection Committee has chosen three winners who will receive $50,000 fellowship awards each for projects in green energy technology. The awardees are Dr. Ahmet Kusoglu, Lawrence Berkeley National Laboratory; Professor Julie Renner, Case Western Reserve University; and Professor Shuhui Sun, Institut National de la Rechersche Scientifique (INRS).

Chicago Quantum Exchange to Create Technologically Transformative Ecosystem

The University of Chicago is collaborating with the U.S. Department of Energy's Argonne National Laboratory and Fermi National Accelerator Laboratory to launch an intellectual hub for advancing academic, industrial and governmental efforts in the science and engineering of quantum information.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Cynthia Jenks Named Director of Argonne's Chemical Sciences and Engineering Division

Argonne has named Cynthia Jenks the next director of the laboratory's Chemical Sciences and Engineering Division. Jenks currently serves as the assistant director for scientific planning and the director of the Chemical and Biological Sciences Division at Ames Laboratory.

Argonne-Developed Technology for Producing Graphene Wins TechConnect National Innovation Award

A method that significantly cuts the time and cost needed to grow graphene has won a 2017 TechConnect National Innovation Award. This is the second year in a row that a team at Argonne's Center for Nanoscale Materials has received this award.

Honeywell UOP and Argonne Seek Research Collaborations in Catalysis Under Technologist in Residence Program

Researchers at Argonne are collaborating with Honeywell UOP scientists to explore innovative energy and chemicals production.

Follow the Fantastic Voyage of the ICARUS Neutrino Detector

The ICARUS neutrino detector, born at Gran Sasso National Lab in Italy and refurbished at CERN, will make its way across the sea to Fermilab this summer. Follow along using an interactive map online.

JSA Awards Graduate Fellowships for Research at Jefferson Lab

Jefferson Sciences Associates announced today the award of eight JSA/Jefferson Lab graduate fellowships. The doctoral students will use the fellowships to support their advanced studies at their universities and conduct research at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) - a U.S. Department of Energy nuclear physics laboratory managed and operated by JSA, a joint venture between SURA and PAE Applied Technologies.

Muon Magnet's Moment Has Arrived

On May 31, the 50-foot-wide superconducting electromagnet at the center of the Muon g-2 experiment saw its first beam of muon particles from Fermilab's accelerators, kicking off a three-year effort to measure just what happens to those particles when placed in a stunningly precise magnetic field. The answer could rewrite scientists' picture of the universe and how it works.

Seven Small Businesses to Collaborate with Argonne to Solve Technical Challenges

Seven small businesses have been selected to collaborate with researchers at Argonne to address technical challenges as part of DOE's Small Business Vouchers Program.


  • Filters

  • × Clear Filters

New Class of Porous Materials Better Separates Carbon Dioxide from Other Gases

Enhanced stability in the presence of water could help reduce smokestack emissions of greenhouse gases.

Manipulating Earth-Abundant Materials to Harness the Sun's Energy

New material based on common iron ore can help turn intermittent sunlight and water into long-lasting fuel.

Oxygen: The Jekyll and Hyde of Biofuels

Scientists are devising ways to protect plants, biofuels and, ultimately, the atmosphere itself from damage caused by an element that sustains life on earth.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.

New Perspectives Into Arctic Cloud Phases

Teamwork provides insight into complicated cloud processes that are important to potential environmental changes in the Arctic.

Mountaintop Plants and Soils to Become Out of Sync

Plants and soil microbes may be altered by climate warming at different rates and in different ways, meaning vital nutrient patterns could be misaligned.

If a Tree Falls in the Amazon

For the first time, scientists pinpointed how often storms topple trees, helping to predict how changes in Amazonia affect the world.

Turning Waste into Fuels, Microbial Style

A newly discovered metabolic process linking different bacteria in a community could enhance bioenergy production.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.


Spotlight

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park





Showing results

0-4 Of 2215