Doe Science news source

The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2014-01-09 11:00:00
  • Article ID: 612238

Fusion Instabilities Lessened by Unexpected Effect

Control of widely recognized distortion may allow greater output at Sandia's Z machine

ALBUQUERQUE, N.M. — A surprising effect created by a 19th century device called a Helmholz coil offers clues about how to achieve controlled nuclear fusion at Sandia National Laboratories’ powerful Z machine.

A Helmholz coil produces a magnetic field when electrified. In recent experiments, two Helmholz coils, installed to provide a secondary magnetic field to Z’s huge one, unexpectedly altered and slowed the growth of the magneto-Rayleigh-Taylor instabilities, an unavoidable, game-ending plasma distortion that usually spins quickly out of control and has sunk past efforts to achieve controlled fusion. “Our experiments dramatically altered the nature of the instability,” said Sandia physicist Tom Awe. “We don’t yet understand all the implications, but it’s become a different beast, which is an exciting physics result.”

The experiments were reported in December in Physical Review Letters.

The purpose of adding two Helmholz coils to fusion experiments at the Z machine, which produces a magnetic field 1,000 times stronger than the coils, was to demonstrate that the secondary field would create a magnetic barrier that, like insulation, would maintain the energy of charged particles in a Z-created plasma. Theoretically, the coils’ field would do this by keeping particles away from the machine’s walls. Contact would lower the fusion reaction’s temperature and cause it to fail.

Researchers also feared that the Helmholz field might cause a short in Z’s huge electrical pulse as it and its corresponding magnetic field sped toward the target, a small deuterium-stuffed cylinder.

Z’s magnetic field is intended to crush the cylinder, called a liner, fusing the deuterium and releasing neutrons and other energies associated with nuclear fusion. Anything hindering that “pinch” or “z-pinch,” would doom the experiment.

In preliminary experiments by Awe’s group, the coils indeed buffered the particles and didn’t interfere with the pinch.

Enter, the coils

But unexpectedly, radiographs of the process showed that the coils’ field had altered and slowed the growth of the magneto-Rayleigh-Taylor instabilities. Those distortions had been thought to occur unavoidably because even the most minute differences in materials turned to plasma are magnified by pressures applied over time.

The strength of instabilities seen in hundreds of previous z-pinches was reduced, possibly significantly.

The typical distortion pattern also changed shape from horizontal to helical.

The unexpected results occurred in a series of experiments to study a concept called Magnetized Liner Inertial Fusion, or MagLIF.

Experimental process like French toast

Researchers placed the Helmholz coils around a liner containing deuterium so the coils’ magnetic field lines soaked both container and fuel over a period of milliseconds. The relatively slow process, like soaking bread in beaten eggs and milk to make French toast, allowed time for the magnetic field lines to fully permeate the material. Then the liner was crushed in tens of nanoseconds by the massive magnetic implosion generated by Sandia’s Z machine. In previous attempts to use Z’s huge field without the Helmholz coils, radiographs showed instabilities appearing on the exterior of the liner. These disturbances cause the liner’s initially smooth exterior to resemble a stack of metallic washers, or small sausage links separated by horizontal rubber bands. Such instabilities increase dramatically in nanoseconds, eating through the liner wall like decay through a tooth. Eventually, they may collapse portions of the inner wall of the liner, releasing microrubble and c! ausing uneven fuel compression that would make fusing significant amounts of deuterium impossible.

The disturbances are a warning sign that the liner might crumple before fully completing its fusion mission.

But firing with the secondary field running clearly altered and slowed formation of the instability as the liner quickly shrank to a fraction of its initial diameter. Introducing the secondary magnetic field seemed to realign the instabilities from simple circles — stacked washers, or rubber bands around sausages — into a helical pattern that more resembled the slanting patchwork of a plaid sweater.

Like a kayak crossing a river

Researchers speculate that the vertical magnetic field created by the helical coils, cutting across Z’s horizontal field, may create the same effect as a river slanting a kayak downstream rather than straight across a channel. Or it may be that the kayak’s original direction is pre-set by the secondary magnetic field to angle it downstream. Whatever the reason, the helical instability created does not appear to eat through the liner wall as rapidly as typical horizontal Rayleigh-Taylor instabilities.

Flashes of X-rays that were released when material from the horizontal instabilities collided in the liner’s center no longer appeared, suggesting more uniform fuel compression occurred, possibly a result of the increasing resistance of the implanted vertical magnetic field to the compression generated by the Z horizontal field.

The overall approach of Awe and his colleagues uses a method described in two papers by Sandia theorist Steve Slutz. In a 2010 article in Physics of Plasmas, Slutz suggested that the magnetic field generated by Z could crush a metallic liner filled with deuterium, fusing the atoms. Slutz and co-authors then indicated, in a 2012 paper in Physical Review Letters, that a more powerful version of Z could create high-yield fusion — much more fusion energy out than the electrical energy put in.

The apparently simple method — turn on a huge magnetic field and wait a few nanoseconds — takes for granted the complicated host of engineered devices and technical services that allow Z to function. But, those aside, the process as described by Slutz needed only two additional aids: a powerful laser to preheat the fuel, making it easier for the compressed fuel to reach fusion temperatures, and Helmholz coils above and below the target to generate a separate, weaker magnetic field that would insulate charged particles from giving up their energy, thereby lowering the temperature of the reaction.

Ongoing experiments on Z will determine how well reality bears out Slutz’s predictions. But for now, the reduction of distortions has been warmly received by fusion researchers, leading to an invitation to Awe to present his team’s results at the 55th Annual Meeting of the APS Division of Plasma Physics, the world’s largest plasma meeting.

The principle of the Z machine is simple: Z’s magnetic force can crush any metal in its path. Possibly, then, it could force the fusion of ions like deuterium in a metal liner a few millimeters in diameter. The magnetic field would crush the liner’s fuel to the diameter of a human hair, causing deuterium to fuse. This would release neutrons that could be used to study radiation effects, one of the key concerns of the National Nuclear Security Administration, which funds the bulk of this research. Further, in the far future, and with additional engineering problems solved, the technique when engineered to fire repetitively could be used as the basis for an electrical generating plant whose fuel is sea water, a carbon-free energy source for humankind.

“Of course the reality is not that simple,” said Awe, “but the new ability to modify the instability growth on the liner surface may be a step in the right direction.”

For more information, visit the Z machine website.

________________________________________

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

Sandia news media contact: Neal Singer, nsinger@sandia.gov, (505) 845-7078

X
X
X
  • Filters

  • × Clear Filters

Microbe Mystery Solved: What Happened to the Deepwater Horizon Oil Plume

The Deepwater Horizon oil spill in the Gulf of Mexico in 2010 is one of the most studied spills in history, yet scientists haven't agreed on the role of microbes in eating up the oil. Now a research team at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has identified all of the principal oil-degrading bacteria as well as their mechanisms for chewing up the many different components that make up the released crude oil.

New Class of 'Soft' Semiconductors Could Transform HD Displays

New research by Berkeley Lab scientists could help usher in a new generation of high-definition displays, optoelectronic devices, photodetectors, and more. They have shown that a class of "soft" semiconductors can be used to emit multiple, bright colors from a single nanowire at resolutions as small as 500 nanometers. The work could challenge quantum dot displays that rely upon traditional semiconductor nanocrystals to emit light.

Could This Strategy Bring High-Speed Communications to the Deep Sea?

A new strategy for sending acoustic waves through water could potentially open up the world of high-speed communications to divers, marine research vessels, remote ocean monitors, deep sea robots, and submarines. By taking advantage of the dynamic rotation generated as the acoustic wave travels, also known as its orbital angular momentum, Berkeley Lab researchers were able to pack more channels onto a single frequency, effectively increasing the amount of information capable of being transmitted.

2-D Material's Traits Could Send Electronics R&D Spinning in New Directions

Researchers created an atomically thin material at Berkeley Lab and used X-rays to measure its exotic and durable properties that make it a promising candidate for a budding branch of electronics known as "spintronics."

Manipulating Earth-Abundant Materials to Harness the Sun's Energy

New material based on common iron ore can help turn intermittent sunlight and water into long-lasting fuel.

Ames Lab Scientists' Surprising Discovery: Making Ferromagnets Stronger by Adding Non-Magnetic Element

Researchers at the U.S. Department of Energy's Ames Laboratory discovered that they could functionalize magnetic materials through a thoroughly unlikely method, by adding amounts of the virtually non-magnetic element scandium to a gadolinium-germanium alloy. It was so unlikely they called it a "counterintuitive experimental finding" in their published work on the research.

Cut U.S. Commercial Building Energy Use 29% with Widespread Controls

The U.S. could slash its energy use by the equivalent of what is currently used by 12 to 15 million Americans if commercial buildings fully used energy-efficiency controls nationwide.

How a Single Chemical Bond Balances Cells Between Life and Death

With SLAC's X-ray laser and synchrotron, scientists measured exactly how much energy goes into keeping a crucial chemical bond from triggering a cell's death spiral.

New Efficient, Low-Temperature Catalyst for Converting Water and CO to Hydrogen Gas and CO2

Scientists have developed a new low-temperature catalyst for producing high-purity hydrogen gas while simultaneously using up carbon monoxide (CO). The discovery could improve the performance of fuel cells that run on hydrogen fuel but can be poisoned by CO.

Study Sheds Light on How Bacterial Organelles Assemble

Scientists at Berkeley Lab and Michigan State University are providing the clearest view yet of an intact bacterial microcompartment, revealing at atomic-level resolution the structure and assembly of the organelle's protein shell. This work can help provide important information for research in bioenergy, pathogenesis, and biotechnology.


  • Filters

  • × Clear Filters

The Electrochemical Society and Toyota North America Announce 2017-2018 Fellowship Winners for Projects in Green Energy Technology

The ECS Toyota Young Investigator Fellowship Selection Committee has chosen three winners who will receive $50,000 fellowship awards each for projects in green energy technology. The awardees are Dr. Ahmet Kusoglu, Lawrence Berkeley National Laboratory; Professor Julie Renner, Case Western Reserve University; and Professor Shuhui Sun, Institut National de la Rechersche Scientifique (INRS).

Chicago Quantum Exchange to Create Technologically Transformative Ecosystem

The University of Chicago is collaborating with the U.S. Department of Energy's Argonne National Laboratory and Fermi National Accelerator Laboratory to launch an intellectual hub for advancing academic, industrial and governmental efforts in the science and engineering of quantum information.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Cynthia Jenks Named Director of Argonne's Chemical Sciences and Engineering Division

Argonne has named Cynthia Jenks the next director of the laboratory's Chemical Sciences and Engineering Division. Jenks currently serves as the assistant director for scientific planning and the director of the Chemical and Biological Sciences Division at Ames Laboratory.

Argonne-Developed Technology for Producing Graphene Wins TechConnect National Innovation Award

A method that significantly cuts the time and cost needed to grow graphene has won a 2017 TechConnect National Innovation Award. This is the second year in a row that a team at Argonne's Center for Nanoscale Materials has received this award.

Honeywell UOP and Argonne Seek Research Collaborations in Catalysis Under Technologist in Residence Program

Researchers at Argonne are collaborating with Honeywell UOP scientists to explore innovative energy and chemicals production.

Follow the Fantastic Voyage of the ICARUS Neutrino Detector

The ICARUS neutrino detector, born at Gran Sasso National Lab in Italy and refurbished at CERN, will make its way across the sea to Fermilab this summer. Follow along using an interactive map online.

JSA Awards Graduate Fellowships for Research at Jefferson Lab

Jefferson Sciences Associates announced today the award of eight JSA/Jefferson Lab graduate fellowships. The doctoral students will use the fellowships to support their advanced studies at their universities and conduct research at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) - a U.S. Department of Energy nuclear physics laboratory managed and operated by JSA, a joint venture between SURA and PAE Applied Technologies.

Muon Magnet's Moment Has Arrived

On May 31, the 50-foot-wide superconducting electromagnet at the center of the Muon g-2 experiment saw its first beam of muon particles from Fermilab's accelerators, kicking off a three-year effort to measure just what happens to those particles when placed in a stunningly precise magnetic field. The answer could rewrite scientists' picture of the universe and how it works.

Seven Small Businesses to Collaborate with Argonne to Solve Technical Challenges

Seven small businesses have been selected to collaborate with researchers at Argonne to address technical challenges as part of DOE's Small Business Vouchers Program.


  • Filters

  • × Clear Filters

New Class of Porous Materials Better Separates Carbon Dioxide from Other Gases

Enhanced stability in the presence of water could help reduce smokestack emissions of greenhouse gases.

Manipulating Earth-Abundant Materials to Harness the Sun's Energy

New material based on common iron ore can help turn intermittent sunlight and water into long-lasting fuel.

Oxygen: The Jekyll and Hyde of Biofuels

Scientists are devising ways to protect plants, biofuels and, ultimately, the atmosphere itself from damage caused by an element that sustains life on earth.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.

New Perspectives Into Arctic Cloud Phases

Teamwork provides insight into complicated cloud processes that are important to potential environmental changes in the Arctic.

Mountaintop Plants and Soils to Become Out of Sync

Plants and soil microbes may be altered by climate warming at different rates and in different ways, meaning vital nutrient patterns could be misaligned.

If a Tree Falls in the Amazon

For the first time, scientists pinpointed how often storms topple trees, helping to predict how changes in Amazonia affect the world.

Turning Waste into Fuels, Microbial Style

A newly discovered metabolic process linking different bacteria in a community could enhance bioenergy production.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.


Spotlight

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park





Showing results

0-4 Of 2215