X
X
X

Filters:

How a Single Chemical Bond Balances Cells Between Life and Death

With SLAC's X-ray laser and synchrotron, scientists measured exactly how much energy goes into keeping a crucial chemical bond from triggering a cell's death spiral.

New Efficient, Low-Temperature Catalyst for Converting Water and CO to Hydrogen Gas and CO2

Scientists have developed a new low-temperature catalyst for producing high-purity hydrogen gas while simultaneously using up carbon monoxide (CO). The discovery could improve the performance of fuel cells that run on hydrogen fuel but can be poisoned by CO.

Study Sheds Light on How Bacterial Organelles Assemble

Scientists at Berkeley Lab and Michigan State University are providing the clearest view yet of an intact bacterial microcompartment, revealing at atomic-level resolution the structure and assembly of the organelle's protein shell. This work can help provide important information for research in bioenergy, pathogenesis, and biotechnology.

A Single Electron's Tiny Leap Sets Off 'Molecular Sunscreen' Response

In experiments at the Department of Energy's SLAC National Accelerator Laboratory, scientists were able to see the first step of a process that protects a DNA building block called thymine from sun damage: When it's hit with ultraviolet light, a single electron jumps into a slightly higher orbit around the nucleus of a single oxygen atom.

Researchers Find New Mechanism for Genome Regulation

The same mechanisms that separate mixtures of oil and water may also help the organization of an unusual part of our DNA called heterochromatin, according to a new study by Berkeley Lab researchers. They found that liquid-liquid phase separation helps heterochromatin organize large parts of the genome into specific regions of the nucleus. The work addresses a long-standing question about how DNA functions are organized in space and time, including how genes are silenced or expressed.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.

SLAC Experiment is First to Decipher Atomic Structure of an Intact Virus with an X-ray Laser

An international team of scientists has for the first time used an X-ray free-electron laser to unravel the structure of an intact virus particle on the atomic level. The method dramatically reduces the amount of virus material required, while also allowing the investigations to be carried out several times faster than before. This opens up entirely new research opportunities.

New Perspectives Into Arctic Cloud Phases

Teamwork provides insight into complicated cloud processes that are important to potential environmental changes in the Arctic.

Illuminating a Better Way to Calculate Excitation Energy

In a new study appearing this week in The Journal of Chemical Physics, researchers demonstrate a new method to calculate excitation energies. They used a new approach based on density functional methods, which use an atom-by-atom approach to calculate electronic interactions. By analyzing a benchmark set of small molecules and oligomers, their functional produced more accurate estimates of excitation energy compared to other commonly used density functionals, while requiring less computing power.


Filters:

Chicago Quantum Exchange to Create Technologically Transformative Ecosystem

The University of Chicago is collaborating with the U.S. Department of Energy's Argonne National Laboratory and Fermi National Accelerator Laboratory to launch an intellectual hub for advancing academic, industrial and governmental efforts in the science and engineering of quantum information.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Cynthia Jenks Named Director of Argonne's Chemical Sciences and Engineering Division

Argonne has named Cynthia Jenks the next director of the laboratory's Chemical Sciences and Engineering Division. Jenks currently serves as the assistant director for scientific planning and the director of the Chemical and Biological Sciences Division at Ames Laboratory.

Argonne-Developed Technology for Producing Graphene Wins TechConnect National Innovation Award

A method that significantly cuts the time and cost needed to grow graphene has won a 2017 TechConnect National Innovation Award. This is the second year in a row that a team at Argonne's Center for Nanoscale Materials has received this award.

Honeywell UOP and Argonne Seek Research Collaborations in Catalysis Under Technologist in Residence Program

Researchers at Argonne are collaborating with Honeywell UOP scientists to explore innovative energy and chemicals production.

Follow the Fantastic Voyage of the ICARUS Neutrino Detector

The ICARUS neutrino detector, born at Gran Sasso National Lab in Italy and refurbished at CERN, will make its way across the sea to Fermilab this summer. Follow along using an interactive map online.

JSA Awards Graduate Fellowships for Research at Jefferson Lab

Jefferson Sciences Associates announced today the award of eight JSA/Jefferson Lab graduate fellowships. The doctoral students will use the fellowships to support their advanced studies at their universities and conduct research at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) - a U.S. Department of Energy nuclear physics laboratory managed and operated by JSA, a joint venture between SURA and PAE Applied Technologies.

Muon Magnet's Moment Has Arrived

On May 31, the 50-foot-wide superconducting electromagnet at the center of the Muon g-2 experiment saw its first beam of muon particles from Fermilab's accelerators, kicking off a three-year effort to measure just what happens to those particles when placed in a stunningly precise magnetic field. The answer could rewrite scientists' picture of the universe and how it works.

Seven Small Businesses to Collaborate with Argonne to Solve Technical Challenges

Seven small businesses have been selected to collaborate with researchers at Argonne to address technical challenges as part of DOE's Small Business Vouchers Program.

JSA Names Charles Perdrisat and Charles Sinclair as Co-Recipients of its 2017 Outstanding Nuclear Physicist Prize

Jefferson Science Associates, LLC, announced today that Charles Perdrisat and Charles Sinclair are the recipients of the 2017 Outstanding Nuclear Physicist Prize. The 2017 JSA Outstanding Nuclear Physicist Award is jointly awarded to Charles Perdrisat for his pioneering implementation of the polarization transfer technique to determine proton elastic form factors, and to Charles Sinclair for his crucial development of polarized electron beam technology, which made such measurements, and many others, possible.


Filters:

Oxygen: The Jekyll and Hyde of Biofuels

Scientists are devising ways to protect plants, biofuels and, ultimately, the atmosphere itself from damage caused by an element that sustains life on earth.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.

New Perspectives Into Arctic Cloud Phases

Teamwork provides insight into complicated cloud processes that are important to potential environmental changes in the Arctic.

Mountaintop Plants and Soils to Become Out of Sync

Plants and soil microbes may be altered by climate warming at different rates and in different ways, meaning vital nutrient patterns could be misaligned.

If a Tree Falls in the Amazon

For the first time, scientists pinpointed how often storms topple trees, helping to predict how changes in Amazonia affect the world.

Turning Waste into Fuels, Microbial Style

A newly discovered metabolic process linking different bacteria in a community could enhance bioenergy production.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Electrifying Magnetism

Researchers create materials with controllable electrical and magnetic properties, even at room temperature.

One Step Closer to Practical Fast Charging Batteries

Novel electrode materials have designed pathways for electrons and ions during the charge/discharge cycle.


Federal Research Spurs Washington State to Store Energy

Article ID: 620339

Released: 2014-07-08 18:00:00

Source Newsroom: Pacific Northwest National Laboratory

RICHLAND, Wash. – Three Washington state utilities have been awarded $14.3 million in matching grants from the state’s new Clean Energy Fund to lead energy storage projects with ties to federally funded research at the Department of Energy’s Pacific Northwest National Laboratory.

Gov. Jay Inslee and the state Department of Commerce announced the grants today at the Mukilteo, Wash., facility of UniEnergy Technologies, which is also known as UET and has licensed PNNL battery technology. Two of the winning utilities will install UET’s all-vanadium redox flow batteries as part of their projects. PNNL developed the battery technology with six years of funding from DOE’s Office of Electricity Delivery and Energy Reliability.

“We’re using our Clean Energy Fund to position Washington state as a leader in energy storage and work with utilities to develop technologies and strategies that will move the market for renewables forward,” said Gov. Inslee. “Delivering operational value for our utilities is crucial if we’re going to successfully develop and deploy clean energy technologies that save energy and reduce energy costs, reduce carbon emissions, and increase our energy independence.”

“As a national lab, PNNL strives to help the entire nation access clean, reliable energy and strengthen the power grid’s resilience,” said PNNL Director Mike Kluse. “But it’s with particular pride that we see our own research and development being implemented in such innovative projects right here in our home state.”

National expertise for the Northwest

To support these projects, PNNL has worked with the state, utilities, technology companies and university researchers to develop detailed descriptions of the various ways energy storage can increase renewable energy use and improve grid efficiency and resiliency. The utilities will consult these descriptions, called use cases, as they implement and evaluate their individual projects.

PNNL is also expected to provide analytical and technical support for the projects. PNNL will conduct benefits analysis, compile field data needed for use cases that help utilities and regulators understand the long-term benefits of new technologies, design plans for acceptance testing and strengthen control strategies. In addition, PNNL plans to collaborate with Washington State University to develop a battery control system for one project and intends to work with the University of Washington’s Clean Energy Institute to share benefits experienced during the projects.

Building on federal research

Results from these Washington state-based demonstrations are expected to contribute to national energy storage efforts. Today’s announcement builds on federal investments in Pacific Northwest grid modernization initiatives, including the Pacific Northwest Smart Grid Demonstration Project , the nation’s largest regional smart grid demonstration project, and Smart Grid Investment Grant funding.

“The Energy Department’s smart grid technology investments and deployment efforts are helping to build a more resilient electric grid that helps communities adapt to increased severe weather events and to enable the integration of distributed and renewable energy resources that mitigate environmental emissions,” said Patricia Hoffman, assistant secretary for DOE’s Office of Electricity Delivery and Energy Reliability. “Today’s announcement is another important step in enabling industry and our National Laboratories to continue working together to improve the resiliency, efficiency, and security of the nation’s grid.”

Three energy storage projects

The winning utilities’ projects and their ties to PNNL and DOE are described below:

• Avista Utilities of Spokane, Wash., was awarded $3.2 million. Its project includes installing a UET flow battery in Pullman, Wash., to support WSU’s smart campus operations. PNNL will collaborate with WSU to develop a control strategy for this project. Avista is participating in the Pacific Northwest Smart Grid Demonstration Project and previously received a DOE Smart Grid Investment Grant.

• Puget Sound Energy of Bellevue, Wash., was awarded $3.8 million. Its project includes installing a lithium-ion battery. As part of a previous project that was jointly funded by the Bonneville Power Administration, Primus Power, Puget Sound Energy and DOE, PNNL analyzed the costs and benefits associated with installing energy storage at various sites within PSE’s service territory.

• Snohomish County Public Utility District No. 1 of Everett, Wash., was awarded $7.3 million. Its project includes installing a UET flow battery and a lithium-ion battery. This project builds on experience gained and equipment and technologies installed with a DOE Smart Grid Investment Grant.

Gov. Jay Inslee, DOE Assistant Secretary Patricia Hoffman and Jud Virden, who leads PNNL’s Energy & Environment Directorate, were among the officials who spoke at today’s event.

For more information about the state-funded projects, go to http://governor.wa.gov/news/releases/article.aspx?id=292.

# # #

Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,300 staff and has an annual budget of about $950 million. It is managed by Battelle for the U.S. Department of Energy’s Office of Science. As the single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information on PNNL, go to www.pnnl.gov/news, or follow PNNL on Facebook, Google+, LinkedIn and Twitter.