X
X
X

The Economic Case for Wind and Solar Energy in Africa

To meet skyrocketing demand for electricity, African countries may have to triple their energy output by 2030. While hydropower and fossil fuel power plants are favored approaches in some quarters, a new assessment by Lawrence Berkeley National Laboratory has found that wind and solar can be economically and environmentally competitive options and can contribute significantly to the rising demand.

Chemists ID Catalytic 'Key' for Converting CO2 to Methanol

Results from experiments and computational modeling studies that definitively identify the "active site" of a catalyst commonly used for making methanol from CO2 will guide the design of improved catalysts for transforming this pollutant to useful chemicals.

Cryo-Electron Microscopy Achieves Unprecedented Resolution Using New Computational Methods

Cryo-electron microscopy (cryo-EM)--which enables the visualization of viruses, proteins, and other biological structures at the molecular level--is a critical tool used to advance biochemical knowledge. Now Berkeley Lab researchers have extended cryo-EM's impact further by developing a new computational algorithm instrumental in constructing a 3-D atomic-scale model of bacteriophage P22 for the first time.

New Study Maps Space Dust in 3-D

A new Berkeley Lab-led study provides detailed 3-D views of space dust in the Milky Way, which could help us understand the properties of this dust and how it affects views of distant objects.

Single-Angle Ptychography Allows 3D Imaging of Stressed Materials

Scientists have used a new X-ray diffraction technique called Bragg single-angle ptychography to get a clear picture of how planes of atoms shift and squeeze under stress.

New Feedback System Could Allow Greater Control Over Fusion Plasma

A physicist has created a new system that will let scientists control the energy and rotation of plasma in real time in a doughnut-shaped machine known as a tokamak.

Towards Super-Efficient, Ultra-Thin Silicon Solar Cells

Researchers from Ames Laboratory used supercomputers at NERSC to evaluate a novel approach for creating more energy-efficient ultra-thin crystalline silicon solar cells by optimizing nanophotonic light trapping.

Study IDs Link Between Sugar Signaling and Regulation of Oil Production in Plants

UPTON, NY--Even plants have to live on an energy budget. While they're known for converting solar energy into chemical energy in the form of sugars, plants have sophisticated biochemical mechanisms for regulating how they spend that energy. Making oils costs a lot. By exploring the details of this delicate energy balance, a group of scientists from the U.

High-Energy Electrons Probe Ultrafast Atomic Motion

A new technique synchronized high-energy electrons with an ultrafast laser pulse to probe how vibrational states of atoms change in time.

Rare Earth Recycling

A new energy-efficient separation of rare earth elements could provide a new domestic source of critical materials.


Jefferson Lab Accomplishes Critical Milestones Toward Completion of 12 GeV Upgrade

The Continuous Electron Beam Accelerator Facility (CEBAF) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility has achieved two major commissioning milestones and is now entering the final stretch of work to conclude its first major upgrade. Recently, the CEBAF accelerator delivered electron beams into two of its experimental halls, Halls B and C, at energies not possible before the upgrade for commissioning of the experimental equipment currently in each hall. Data were recorded in each hall, which were then confirmed to be of sufficient quality to allow for particle identification, a primary indicator of good detector operation.

Valerie Taylor Named Argonne National Laboratory's Mathematics and Computer Science Division Director

Computer scientist Valerie Taylor has been appointed as the next director of the Mathematics and Computer Science division at Argonne, effective July 3, 2017.

Three SLAC Employees Awarded Lab's Highest Honor

At a March 7 ceremony, three employees of the Department of Energy's SLAC National Accelerator Laboratory were awarded the lab's highest honor ­- the SLAC Director's Award.

Dan Sinars Represents Sandia in First Energy Leadership Class

Dan Sinars, a senior manager in Sandia National Laboratories' pulsed power center, which built and operates the Z facility, is the sole representative from a nuclear weapons lab in a new Department of Energy leadership program that recently visited Sandia.

ORNL, HTS International Corporation to Collaborate on Manufacturing Research

HTS International Corporation and the Department of Energy's Oak Ridge National Laboratory have signed an agreement to explore potential collaborations in advanced manufacturing research.

Jefferson Lab Director Honored with Energy Secretary Award

Hugh Montgomery, director of the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab), was awarded The Secretary's Distinguished Service Award by the Secretary of Energy earlier this year.

New Projects to Make Geothermal Energy More Economically Attractive

Geothermal energy, a clean, renewable source of energy produced by the heat of the earth, provides about 6 percent of California's total power. That number could be much higher if associated costs were lower. Now scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have launched two California Energy Commission-funded projects aimed at making geothermal energy more cost-effective to deploy and operate.

Southern Research Project Advances Novel CO2 Utilization Strategy

The U.S. Department of Energy's Office of Fossil Energy has awarded Southern Research nearly $800,000 for a project that targets a more cost-efficient and environmentally friendly method of producing some of the most important chemicals used in manufacturing.

Harker School Wins 2017 SLAC Regional Science Bowl Competition

After losing its first match of the day to the defending champions, The Harker School's team won 10 consecutive rounds to claim victory in the annual SLAC Regional DOE Science Bowl on Saturday, Feb. 11.

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative

Alexander brings extensive management and leadership experience in computational science research to the position.


High-Energy Electrons Probe Ultrafast Atomic Motion

A new technique synchronized high-energy electrons with an ultrafast laser pulse to probe how vibrational states of atoms change in time.

Rare Earth Recycling

A new energy-efficient separation of rare earth elements could provide a new domestic source of critical materials.

Modeling the "Flicker" of Gluons in Subatomic Smashups

A new model identifies a high degree of fluctuations in the glue-like particles that bind quarks within protons as essential to explaining proton structure.

Rare Nickel Atom Has "Doubly Magic" Structure

Supercomputing calculations confirm that rare nickel-78 has unusual structure, offering insights into supernovas.

Microbial Activity in the Subsurface Contributes to Greenhouse Gas Fluxes

Natural carbon dioxide production from deep subsurface soils contributes significantly to emissions, even in a semiarid floodplain.

Stretching a Metal Into an Insulator

Straining a thin film controllably allows tuning of the materials' magnetic, electronic, and catalytic properties, essential for new energy and electronic devices.

How Moisture Affects the Way Soil Microbes Breathe

Study models soil-pore features that hold or release carbon dioxide.

ARM Data Is for the Birds

Scientists use LIDAR and radar data to study bird migration patterns, thanks to the Atmospheric Radiation Measurement (ARM) Climate Research Facility.

The Future of Coastal Flooding

Better storm surge prediction capabilities could help reduce the impacts of extreme weather events, such as hurricanes.

Estimating Global Energy Use for Water-Related Processes

Scientists find that water-related energy consumption is increasing across the globe, with pronounced differences across regions and sectors.


Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park




Water: Finding the Normal Within the Weird

Article ID: 666428

Released: 2016-12-13 15:05:43

Source Newsroom: Pacific Northwest National Laboratory

  • Credit: Courtesy of Wikimedia Commons

    Water is unlike other substances because its solid form — like this iceberg — is less dense than its liquid form — like this ocean. Scientists are studying other weird properties of water.

  • Caption A laser (red arrow) creates a tiny drop of supercooled water above ice, allowing scientists to use a method called IRAS (green arrows) to measure in nanoseconds how fast supercooled water turns back into ice.

RICHLAND, Wash. – Water has many unusual properties, such as its solid form, ice, being able to float in liquid water, and they get weirder below its freezing point. Supercooled water — below freezing but still a liquid — is notoriously difficult to study. Some researchers thought supercooled water behaved oddly within a particularly cold range, snapping from a liquid into a solid, instantaneously crystallizing at a particular temperature like something out of a Kurt Vonnegut novel.

Now, researchers have figured out a way to take snapshots of water freezing within that deeply supercooled range. And guess what? Water isn't as weird as it could be. Liquid water can exist all the way down, crystallizing into a solid more slowly as things get colder — as expected, but never all at once.

A team of researchers from the Department of Energy's Pacific Northwest National Laboratory reported the work in this week's Proceedings of the National Academy of Sciences Early Edition online. Although the results won't change the way you make your iced tea in the summer, it might help theorists flesh out their understanding of water and help atmospheric scientists better understand rain and clouds.

Most people know that ice floats on liquid water, but they might not be aware that water has a hard time forming a glass. A glass — like a window — is a solid in which the molecules are actually arranged as they would be in a liquid.

Take a bunch of oranges. Oranges jumbled loosely in a bag are like a liquid — the individual molecules can move around pretty freely. If you pack the oranges neatly in a box, you form a crystal. If you tighten the bag and stop the jumbled oranges from moving around but without arranging them neatly, you form a glass.

Glasses are great because they can hold contaminants — think a fly in amber, or nuclear waste in vitrified glass — whereas crystals kick out contaminants — freezing seawater is one way to desalinate it. To make a glass, researchers melt sand or another component until it is liquid. And then they cool it so fast it can't form a crystal before it solidifies.

But freeze bulk water fast and it does not form a glass. It rapidly becomes ice. To become glass, liquid water must be cooled to a deeply subzero temperature within microseconds — about 136 Kelvin (about minus 215 degrees F), a temperature common in outer space, where some expect glassy water to exist.

The range that has been difficult to study is slightly above that so-called glass transition temperature. Scientists don't know what's going on between about 160 and 235 K. (In real life, that's between the temperature on Mars's moon Phobos and Fairbanks, Alaska, in the depth of winter.) At the high end of that range (closer to 235 K, Fairbanks), water freezes from a supercooled liquid to a crystal in milliseconds, which is way too fast for current analytical techniques to study.

Scientists came up with a variety of ideas to explain what might be going on in that unexplored region. They wondered if the water would remain metastable — liquid but poised to start crystallizing at a moment's notice — all the way down to temperatures where it becomes a glass. Or if the liquid would become unstable somewhere warmer than that, around 228 K (a little warmer than the record lows at McMurdo Station in Antarctica), at which point it would spontaneously crystallize due to what physicists call a singularity. Also, something within that range might be happening that can help explain why water has a hard time forming a glass.

"There was a plethora of postulates but a paucity of data," said PNNL chemical physicist Bruce Kay.

"Our goal was to develop a new technique to rapidly heat and cool nanoscale supercooled water films," said PNNL physicist Greg Kimmel.

To get the data in that unmeasurable range, Kimmel and Kay worked with Yuntao Xu, a laser expert, and others at PNNL and developed a way to heat and cool water on nanosecond timescales with a laser. Using this method, the PNNL scientists measured how quickly the supercooled water converted into crystalline ice as the temperature decreased. The crystallization time dropped from nanoseconds near the highest temperatures to hours at 126 K. At no point, especially at 228 K, did the supercooled water snap into a crystal, ruling out the possibility of a singularity.

To look for the singularity from another angle, the researchers explored how fast the molecules of supercooled water could move, and how much that changed as it got colder. If the singularity existed, they would expect the water molecules to be unable to move at some point. From the freezing point down to the glassing point, the molecules moved slower and slower in a complex but continuous fashion. Overall, the relation between the temperature and how fast the molecules could move did not suggest a singularity at 228 K.

"We can probably take the singularity off the table," said PNNL's Kay.

Taken together, the results provide valuable insight into how water behaves.

"For example, in atmospheric chemistry, supercooled drops of water are found in clouds. There are questions about how long they persist," said PNNL's Kimmel.

This work was performed in EMSL, the Environmental Molecular Sciences Laboratory, a DOE Office of Science User Facility at PNNL. This work was supported by the Department of Energy Office of Science.

Reference: Yuntao Xu, Nikolay G. Petrik, R. Scott Smith, Bruce D. Kay and Greg A. Kimmel. The growth rate of crystalline ice and the diffusivity of supercooled water from 126 K to 262 K, Proc Natl Acad Sci U S A Early Edition, December 12, 2016, DOI: 10.1073/pnas.1611395114.