X
X
X

Chemists ID Catalytic 'Key' for Converting CO2 to Methanol

Results from experiments and computational modeling studies that definitively identify the "active site" of a catalyst commonly used for making methanol from CO2 will guide the design of improved catalysts for transforming this pollutant to useful chemicals.

Cryo-Electron Microscopy Achieves Unprecedented Resolution Using New Computational Methods

Cryo-electron microscopy (cryo-EM)--which enables the visualization of viruses, proteins, and other biological structures at the molecular level--is a critical tool used to advance biochemical knowledge. Now Berkeley Lab researchers have extended cryo-EM's impact further by developing a new computational algorithm instrumental in constructing a 3-D atomic-scale model of bacteriophage P22 for the first time.

New Study Maps Space Dust in 3-D

A new Berkeley Lab-led study provides detailed 3-D views of space dust in the Milky Way, which could help us understand the properties of this dust and how it affects views of distant objects.

Single-Angle Ptychography Allows 3D Imaging of Stressed Materials

Scientists have used a new X-ray diffraction technique called Bragg single-angle ptychography to get a clear picture of how planes of atoms shift and squeeze under stress.

New Feedback System Could Allow Greater Control Over Fusion Plasma

A physicist has created a new system that will let scientists control the energy and rotation of plasma in real time in a doughnut-shaped machine known as a tokamak.

Towards Super-Efficient, Ultra-Thin Silicon Solar Cells

Researchers from Ames Laboratory used supercomputers at NERSC to evaluate a novel approach for creating more energy-efficient ultra-thin crystalline silicon solar cells by optimizing nanophotonic light trapping.

Study IDs Link Between Sugar Signaling and Regulation of Oil Production in Plants

UPTON, NY--Even plants have to live on an energy budget. While they're known for converting solar energy into chemical energy in the form of sugars, plants have sophisticated biochemical mechanisms for regulating how they spend that energy. Making oils costs a lot. By exploring the details of this delicate energy balance, a group of scientists from the U.

High-Energy Electrons Probe Ultrafast Atomic Motion

A new technique synchronized high-energy electrons with an ultrafast laser pulse to probe how vibrational states of atoms change in time.

Rare Earth Recycling

A new energy-efficient separation of rare earth elements could provide a new domestic source of critical materials.

Two-Dimensional MXene Materials Get Their Close-Up

Researchers have long sought electrically conductive materials for economical energy-storage devices. Two-dimensional (2D) ceramics called MXenes are contenders.


Three SLAC Employees Awarded Lab's Highest Honor

At a March 7 ceremony, three employees of the Department of Energy's SLAC National Accelerator Laboratory were awarded the lab's highest honor ­- the SLAC Director's Award.

Dan Sinars Represents Sandia in First Energy Leadership Class

Dan Sinars, a senior manager in Sandia National Laboratories' pulsed power center, which built and operates the Z facility, is the sole representative from a nuclear weapons lab in a new Department of Energy leadership program that recently visited Sandia.

ORNL, HTS International Corporation to Collaborate on Manufacturing Research

HTS International Corporation and the Department of Energy's Oak Ridge National Laboratory have signed an agreement to explore potential collaborations in advanced manufacturing research.

Jefferson Lab Director Honored with Energy Secretary Award

Hugh Montgomery, director of the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab), was awarded The Secretary's Distinguished Service Award by the Secretary of Energy earlier this year.

New Projects to Make Geothermal Energy More Economically Attractive

Geothermal energy, a clean, renewable source of energy produced by the heat of the earth, provides about 6 percent of California's total power. That number could be much higher if associated costs were lower. Now scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have launched two California Energy Commission-funded projects aimed at making geothermal energy more cost-effective to deploy and operate.

Southern Research Project Advances Novel CO2 Utilization Strategy

The U.S. Department of Energy's Office of Fossil Energy has awarded Southern Research nearly $800,000 for a project that targets a more cost-efficient and environmentally friendly method of producing some of the most important chemicals used in manufacturing.

Harker School Wins 2017 SLAC Regional Science Bowl Competition

After losing its first match of the day to the defending champions, The Harker School's team won 10 consecutive rounds to claim victory in the annual SLAC Regional DOE Science Bowl on Saturday, Feb. 11.

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative

Alexander brings extensive management and leadership experience in computational science research to the position.

Kalinin, Paranthaman Elected Materials Research Society Fellows

Two researchers at Oak Ridge National Laboratory, Sergei Kalinin and Mariappan Parans Paranthaman, have been elected fellows of the Materials Research Society.

Two PNNL Researchers Elected to Membership in the National Academy of Engineering

Two scientists at the Pacific Northwest National Laboratory will become members of the prestigious National Academy of Engineering.


High-Energy Electrons Probe Ultrafast Atomic Motion

A new technique synchronized high-energy electrons with an ultrafast laser pulse to probe how vibrational states of atoms change in time.

Rare Earth Recycling

A new energy-efficient separation of rare earth elements could provide a new domestic source of critical materials.

Modeling the "Flicker" of Gluons in Subatomic Smashups

A new model identifies a high degree of fluctuations in the glue-like particles that bind quarks within protons as essential to explaining proton structure.

Rare Nickel Atom Has "Doubly Magic" Structure

Supercomputing calculations confirm that rare nickel-78 has unusual structure, offering insights into supernovas.

Microbial Activity in the Subsurface Contributes to Greenhouse Gas Fluxes

Natural carbon dioxide production from deep subsurface soils contributes significantly to emissions, even in a semiarid floodplain.

Stretching a Metal Into an Insulator

Straining a thin film controllably allows tuning of the materials' magnetic, electronic, and catalytic properties, essential for new energy and electronic devices.

How Moisture Affects the Way Soil Microbes Breathe

Study models soil-pore features that hold or release carbon dioxide.

ARM Data Is for the Birds

Scientists use LIDAR and radar data to study bird migration patterns, thanks to the Atmospheric Radiation Measurement (ARM) Climate Research Facility.

The Future of Coastal Flooding

Better storm surge prediction capabilities could help reduce the impacts of extreme weather events, such as hurricanes.

Estimating Global Energy Use for Water-Related Processes

Scientists find that water-related energy consumption is increasing across the globe, with pronounced differences across regions and sectors.


Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park




Ceramic Matrix Composites Take Flight in LEAP Jet Engine

Article ID: 667092

Released: 2017-01-03 14:05:06

Source Newsroom: Oak Ridge National Laboratory

  • Credit: Image credit: General Electric

    Advanced materials take flight in the LEAP engine, featuring ceramic matrix composites developed over a quarter-century by GE with help from DOE and ORNL.

Ceramic matrix composite (CMC) materials are made of coated ceramic fibers surrounded by a ceramic matrix. They are tough, lightweight and capable of withstanding temperatures 300–400 degrees F hotter than metal alloys can endure. If certain components were made with CMCs instead of metal alloys, the turbine engines of aircraft and power plants could operate more efficiently at higher temperatures, combusting fuel more completely and emitting fewer pollutants.

A quarter-century ago, the U.S. Department of Energy began a program, led by DOE’s Oak Ridge National Laboratory, to support U.S. development of CMC materials. In 2016, LEAP, a new aircraft engine, became the first widely deployed CMC-containing product. CFM International, a 50/50 joint venture of Safran and GE, manufactures LEAP.

The engine has one CMC component, a turbine shroud lining its hottest zone, so it can operate at up to 2400 F. The CMC needs less cooling air than nickel-based super-alloys and is part of a suite of technologies that contribute to 15 percent fuel savings for LEAP over its predecessor, the CFM 56 engine.

Presales to airlines eager to lower fuel costs are staggering—$140 billion at list price for more than 11,000 engines. In August, the first LEAP engine started flying commercially on Airbus A320neo. Other LEAP engines will fly on the Boeing 737 MAX in 2017.

“The materials developed in the DOE program became the foundation for the material now going into aircraft engines,” said Krishan Luthra, who led GE Global Research’s development of CMCs for 25 years.

GE’s CMC is made of silicon carbide (SiC) ceramic fibers (containing silicon and carbon in equal amounts) coated with a proprietary material containing boron nitride. The coated fibers are shaped into a “preform” that is embedded in SiC containing 10–15 percent silicon.

ORNL’s Rick Lowden did foundational work in the 1980s that paved the way for DOE programs. The key was coating the ceramic fibers.

“A ceramic matrix composite is different than almost all other composites because the matrix is ceramic and the fiber is ceramic,” Lowden said. Typically, combining two brittle materials yields a brittle material, he said. But altering the bond between fiber and matrix allows the material to act more like a piece of wood. Cracks don’t propagate into the fibers from the matrix around them. The fibers hold the material together and carry the load while slowly pulling from the matrix, adding toughness.

DOE’s Continuous Fiber Ceramic Composite (CFCC) program ran from 1992 to 2002 and supported industrial development of CMCs by AlliedSignal, Alzeta, Amercom, Babcock and Wilcox, Dow Chemical, Dow Corning, DuPont-Lanxide Composites, GE and Textron. Its budget averaged $10 million per year, and industry shared costs.

CFCC funded companies to make composites and national labs and universities to characterize the properties of the materials. Efforts were coordinated and funded through ORNL. Lowden wrote the program plan with Scott Richland of DOE and Mike Karnitz of ORNL and co-led support to companies with ORNL’s Karren More, Pete Tortorelli and Edgar Lara-Curzio and Argonne National Laboratory’s Bill Ellingson. The U.S. Advanced Ceramics Association represented industry in informing Congress of the benefits of CMCs.

“We were looking at different fibers and different interfacial coatings and different matrices,” More said of ORNL’s role. “We were involved in understanding the degradation mechanisms and down-selection of the more promising composites and cost-effective techniques for preparing them.”

Lowden added, “We were working toward a common goal of getting ceramic matrix composites into industrial applications including high-pressure heat exchangers, land-based turbines, carburizing furnaces and radiant burners.”

GE’s CFCC project was to develop CMCs for industrial gas turbine engines that produce electricity. (GE manufactures both power and propulsion turbines.) A follow-on DOE program ran through 2005 and funded the most promising CFCC companies to further develop materials and components and if possible, test them in applications. Total funding was approximately $15 million, with industry cost-sharing approaching 50 percent. GE field-tested a CMC shroud in a 170-megawatt industrial gas turbine under the program. All told, GE invested $1.5 billion after that to commercialize the technology.

“Seed money is critical for high-risk, high-payoff technologies,” Luthra said. “Material development is a long-term activity, and Oak Ridge tremendously supported the basic research.”

As evidence of success, Luthra pointed to new CMC factories and jobs today. In 2002, GE acquired a CMC facility in Newark, Delaware, which has grown substantially. A new GE facility opened in Asheville, North Carolina, in 2014 for making shroud components. In addition, GE is building two adjacent factories in Huntsville, Alabama—the first to ramp up fiber production and the second to coat fibers and make tape for processing into components. At full-scale, the Asheville and Huntsville sites are expected to bring 640 high-tech jobs.

In 2019 GE will produce an engine, GE9X, with five CMC parts—two combustor liners, two nozzles, one shroud. Presales are approximately $29 billion at list prices for 700 engines.

Firing up research of ceramic composites

Long before ceramic fibers reinforced ceramic composites, ORNL researchers coated nuclear fuel with carbon and SiC to confine radioactivity inside tristructural-isotropic (TRISO) fuel particles. During experiments in the ‘70s, ORNL’s Jack Lackey realized the process could be modified to manufacture ceramic composites more rapidly. With support from DOE’s Fossil Energy Materials Program, his group pioneered a process to do just that.

“You take a fibrous preform, place it in a furnace, and vapor-deposit solids on and around the fibers,” explained Lowden, who was Lackey’s technician. To coat the whole object uniformly, the deposition process must be extremely slow—a half-inch part might take six months to process.

However, the ORNL team found that placing a fibrous mat on a cold plate, heating the top and forcing gases through the mat sped the process from months to hours. “That’s where we got involved in ceramic matrix composites,” Lowden said. ORNL supplied CMCs for years to researchers evaluating CMCs for various applications.

Today, GE mass-produces CMCs using a melt infiltration process. The production capacity is being scaled to make 36,000 perfect-quality shroud segments per year by 2020. (Each LEAP engine requires 18 shrouds segments.)

During the CFCC years, the program’s greatest success was an industrial gas turbine placed into operation at the Malden Mills plant in Massachusetts in 1999. The turbine sported a CMC combustor liner—developed by Solar Turbines with input from researchers at ORNL, Argonne, United Technologies, B.F. Goodrich and DuPont-Lanxide Composites—that helped improve the efficiency of the turbine. At the time, Energy Secretary Bill Richardson said the Malden Mills plant had “the lowest emissions of any industrialized heat and electric combined facility in the United States.”

Since CFCC, GE has tested CMCs for more than 2 million hours, including 40,000 hours in industrial gas turbines. Jim Vartuli of GE’s CMC program said DOE support on large industrial gas turbines to get those first demonstrators gave GE confidence that the ceramics could survive high temperatures and stresses in turbines for long periods.

“GE is the only company in the world with both large industrial gas turbines and aircraft engines businesses, and this enables many opportunities for co-development of advanced technology. This is an example of the ‘GE Store’—the transfer of technology and knowledge between GE businesses,” Vartuli explained. “The success of the turbine tests convinced our aviation business that CMCs would be successful for aircraft engines, too.”

How DOE and its national labs helped industry

CFCC companies brought materials they’d made to DOE national laboratories at Argonne for nondestructive evaluation and Oak Ridge for microstructural characterization and stress and oxidation tests. “This partnership highlights the value of the national labs,” More said. “We do work that is fundamental and broad to understand materials’ behaviors. We provide necessary information to help the community make decisions about where to go, how to proceed.” New knowledge about how materials degraded helped industry accelerate improvements and optimize manufacturing processes.

Research at ORNL ranged from development by Allen Haynes of environmental barrier coatings that could extend the lives of underlying materials five-fold to nondestructive imaging of materials with thermal cameras by Ralph Dinwiddie. At Argonne National Laboratory, Bill Ellingson led development of broader nondestructive testing methods to ensure safe continued use of components by monitoring material degradation after intervals of usage. Without damaging the components, the inspections revealed how materials responded in an environment over time. With ORNL researchers, Argonne scientists developed several nondestructive inspection technologies that were instrumental in determining component performance.

ORNL’s Pete Tortorelli and H. T. Lin stressed materials in environmental exposure chambers to learn their points of failure. Lab colleagues Jim Keiser and Irv Federer exposed samples to corrosive gases, temperatures up to 2550 F and pressures up to 500 psi in “Keiser rigs” that simulated conditions in turbines. These were also used by More, Tortorelli and Keiser to screen protective coatings needed in combustion environments.

Meanwhile, More characterized structures of stressed materials. “Karren More entered the picture as our microscopist, and that changed our world,” Lowden recalled. “To be able to see what was happening with transmission electron microscopy, and understand what was happening at that level, was incredible.” GE had access to some techniques in-house because of its large infrastructure. “But we got invaluable help from Karren on the fiber coatings,” Luthra said. “It helped us develop the fiber coatings faster.”

ORNL’s early findings encouraged industry to abandon carbon as a fiber coating. Carbon oxidized, turning into carbon monoxide and carbon dioxide, and volatilized, thinning the coating. ORNL engineers recommended oxidation-resistant boron nitride instead.

Moreover, Edgar Lara-Curzio modeled and tested the mechanical performance of CMC materials under different loading conditions and their resistance to fatigue, creep and rupture in ORNL’s High Temperature Materials Laboratory. In collaboration with Matt Ferber and Chun-Hway Hsueh, he implemented experimental and analytical methods to characterize the micromechanics of fiber–matrix interfaces. “These measurements were essential to quantify chemical bonding between fibers and matrix, residual stresses experienced by the fibers and friction between the fibers and the matrix during fiber sliding,” said Lara-Curzio, noting CMCs are tough mainly because interfacial coatings let fibers slide and bridge matrix cracks. He and Hsueh provided key information about how a single fiber slides in a ceramic matrix. Lara-Curzio, Ferber and Lowden then quantified the effect of the thickness of fiber coatings on sliding and discovered a value that optimized mechanical properties. Companies widely adopted this correlation to optimize their composites.

Back to the future

Today at GE, Luthra dreams of putting CMCs everywhere the engine gets hot—blades, nozzles, liners. To achieve this vision, the community has many technological mountains to climb. One is developing manufacturing processes that, unlike melt infiltration, do not produce excess silicon that can volatilize and form cracks in the matrix.

“Every decade we have increased [the heat metals can take] by about 50 degrees,” Luthra noted. Today CMC material can take up to 2400 F, but Luthra would like the next generation to reach 2700 F. “This is going to be as challenging as the development of the first ceramic composite,” he said.

To highlight these challenges, the U.S. Advanced Ceramics Association is creating an industry-driven roadmap for the development of 2700 F CMCs for advanced gas turbines. This roadmap will inform Congress about successes of 2400 F CMCs, encourage investment in the development of 2700 F CMCs and highlight the contributions of CMCs to the creation of high-paying U.S. manufacturing jobs, national security and the environment. USACA’s roadmap supports findings of a recent National Academy of Sciences study that concludes investment in gas turbine materials and coatings should be a high priority and that 2700 F CMCs could dramatically reduce or eliminate the need for cooling in engines, boost efficiency and lower weight. DOE national labs may once again be called upon to help discover high-performance materials and processes that can operate at higher temperatures and even more extreme environments.

Future CMCs will have to endure extremes on four time scales, depending on the application: 1 hour or less of hot time for launch vehicles; days for accident-tolerant fuels (e.g., if a cooling system goes out in a nuclear power plant); thousands of hours, the operating life of aircraft turbines; and over 30,000 hours for industrial gas turbines for power production.

A land-based gas turbine to generate electricity can be more demanding than an aircraft engine application because it spends much more time operating at high temperature, Luthra said. Advances in the next generation of 2700 F materials would enable breakthrough improvements in efficiency and emissions that could lower the cost of electricity.

The sky, after all, may not be the limit.

DOE's Advanced Manufacturing Office (AMO), formerly known as the Industrial Technologies Program, supports applied research, development and demonstration of new materials, information and processes that improve American manufacturing’s energy efficiency, as well as platform technologies for manufacturing clean energy products. AMO helped fund this research.

UT-Battelle manages ORNL for DOE’s Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit www.science.energy.gov. —by Dawn Levy