Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-01-03 14:05:06
  • Article ID: 667092

Ceramic Matrix Composites Take Flight in LEAP Jet Engine

ORNL-led DOE program supported GE R&D of first widely deployed CMC product

  • Credit: Image credit: General Electric

    Advanced materials take flight in the LEAP engine, featuring ceramic matrix composites developed over a quarter-century by GE with help from DOE and ORNL.

Ceramic matrix composite (CMC) materials are made of coated ceramic fibers surrounded by a ceramic matrix. They are tough, lightweight and capable of withstanding temperatures 300–400 degrees F hotter than metal alloys can endure. If certain components were made with CMCs instead of metal alloys, the turbine engines of aircraft and power plants could operate more efficiently at higher temperatures, combusting fuel more completely and emitting fewer pollutants.

A quarter-century ago, the U.S. Department of Energy began a program, led by DOE’s Oak Ridge National Laboratory, to support U.S. development of CMC materials. In 2016, LEAP, a new aircraft engine, became the first widely deployed CMC-containing product. CFM International, a 50/50 joint venture of Safran and GE, manufactures LEAP.

The engine has one CMC component, a turbine shroud lining its hottest zone, so it can operate at up to 2400 F. The CMC needs less cooling air than nickel-based super-alloys and is part of a suite of technologies that contribute to 15 percent fuel savings for LEAP over its predecessor, the CFM 56 engine.

Presales to airlines eager to lower fuel costs are staggering—$140 billion at list price for more than 11,000 engines. In August, the first LEAP engine started flying commercially on Airbus A320neo. Other LEAP engines will fly on the Boeing 737 MAX in 2017.

“The materials developed in the DOE program became the foundation for the material now going into aircraft engines,” said Krishan Luthra, who led GE Global Research’s development of CMCs for 25 years.

GE’s CMC is made of silicon carbide (SiC) ceramic fibers (containing silicon and carbon in equal amounts) coated with a proprietary material containing boron nitride. The coated fibers are shaped into a “preform” that is embedded in SiC containing 10–15 percent silicon.

ORNL’s Rick Lowden did foundational work in the 1980s that paved the way for DOE programs. The key was coating the ceramic fibers.

“A ceramic matrix composite is different than almost all other composites because the matrix is ceramic and the fiber is ceramic,” Lowden said. Typically, combining two brittle materials yields a brittle material, he said. But altering the bond between fiber and matrix allows the material to act more like a piece of wood. Cracks don’t propagate into the fibers from the matrix around them. The fibers hold the material together and carry the load while slowly pulling from the matrix, adding toughness.

DOE’s Continuous Fiber Ceramic Composite (CFCC) program ran from 1992 to 2002 and supported industrial development of CMCs by AlliedSignal, Alzeta, Amercom, Babcock and Wilcox, Dow Chemical, Dow Corning, DuPont-Lanxide Composites, GE and Textron. Its budget averaged $10 million per year, and industry shared costs.

CFCC funded companies to make composites and national labs and universities to characterize the properties of the materials. Efforts were coordinated and funded through ORNL. Lowden wrote the program plan with Scott Richland of DOE and Mike Karnitz of ORNL and co-led support to companies with ORNL’s Karren More, Pete Tortorelli and Edgar Lara-Curzio and Argonne National Laboratory’s Bill Ellingson. The U.S. Advanced Ceramics Association represented industry in informing Congress of the benefits of CMCs.

“We were looking at different fibers and different interfacial coatings and different matrices,” More said of ORNL’s role. “We were involved in understanding the degradation mechanisms and down-selection of the more promising composites and cost-effective techniques for preparing them.”

Lowden added, “We were working toward a common goal of getting ceramic matrix composites into industrial applications including high-pressure heat exchangers, land-based turbines, carburizing furnaces and radiant burners.”

GE’s CFCC project was to develop CMCs for industrial gas turbine engines that produce electricity. (GE manufactures both power and propulsion turbines.) A follow-on DOE program ran through 2005 and funded the most promising CFCC companies to further develop materials and components and if possible, test them in applications. Total funding was approximately $15 million, with industry cost-sharing approaching 50 percent. GE field-tested a CMC shroud in a 170-megawatt industrial gas turbine under the program. All told, GE invested $1.5 billion after that to commercialize the technology.

“Seed money is critical for high-risk, high-payoff technologies,” Luthra said. “Material development is a long-term activity, and Oak Ridge tremendously supported the basic research.”

As evidence of success, Luthra pointed to new CMC factories and jobs today. In 2002, GE acquired a CMC facility in Newark, Delaware, which has grown substantially. A new GE facility opened in Asheville, North Carolina, in 2014 for making shroud components. In addition, GE is building two adjacent factories in Huntsville, Alabama—the first to ramp up fiber production and the second to coat fibers and make tape for processing into components. At full-scale, the Asheville and Huntsville sites are expected to bring 640 high-tech jobs.

In 2019 GE will produce an engine, GE9X, with five CMC parts—two combustor liners, two nozzles, one shroud. Presales are approximately $29 billion at list prices for 700 engines.

Firing up research of ceramic composites

Long before ceramic fibers reinforced ceramic composites, ORNL researchers coated nuclear fuel with carbon and SiC to confine radioactivity inside tristructural-isotropic (TRISO) fuel particles. During experiments in the ‘70s, ORNL’s Jack Lackey realized the process could be modified to manufacture ceramic composites more rapidly. With support from DOE’s Fossil Energy Materials Program, his group pioneered a process to do just that.

“You take a fibrous preform, place it in a furnace, and vapor-deposit solids on and around the fibers,” explained Lowden, who was Lackey’s technician. To coat the whole object uniformly, the deposition process must be extremely slow—a half-inch part might take six months to process.

However, the ORNL team found that placing a fibrous mat on a cold plate, heating the top and forcing gases through the mat sped the process from months to hours. “That’s where we got involved in ceramic matrix composites,” Lowden said. ORNL supplied CMCs for years to researchers evaluating CMCs for various applications.

Today, GE mass-produces CMCs using a melt infiltration process. The production capacity is being scaled to make 36,000 perfect-quality shroud segments per year by 2020. (Each LEAP engine requires 18 shrouds segments.)

During the CFCC years, the program’s greatest success was an industrial gas turbine placed into operation at the Malden Mills plant in Massachusetts in 1999. The turbine sported a CMC combustor liner—developed by Solar Turbines with input from researchers at ORNL, Argonne, United Technologies, B.F. Goodrich and DuPont-Lanxide Composites—that helped improve the efficiency of the turbine. At the time, Energy Secretary Bill Richardson said the Malden Mills plant had “the lowest emissions of any industrialized heat and electric combined facility in the United States.”

Since CFCC, GE has tested CMCs for more than 2 million hours, including 40,000 hours in industrial gas turbines. Jim Vartuli of GE’s CMC program said DOE support on large industrial gas turbines to get those first demonstrators gave GE confidence that the ceramics could survive high temperatures and stresses in turbines for long periods.

“GE is the only company in the world with both large industrial gas turbines and aircraft engines businesses, and this enables many opportunities for co-development of advanced technology. This is an example of the ‘GE Store’—the transfer of technology and knowledge between GE businesses,” Vartuli explained. “The success of the turbine tests convinced our aviation business that CMCs would be successful for aircraft engines, too.”

How DOE and its national labs helped industry

CFCC companies brought materials they’d made to DOE national laboratories at Argonne for nondestructive evaluation and Oak Ridge for microstructural characterization and stress and oxidation tests. “This partnership highlights the value of the national labs,” More said. “We do work that is fundamental and broad to understand materials’ behaviors. We provide necessary information to help the community make decisions about where to go, how to proceed.” New knowledge about how materials degraded helped industry accelerate improvements and optimize manufacturing processes.

Research at ORNL ranged from development by Allen Haynes of environmental barrier coatings that could extend the lives of underlying materials five-fold to nondestructive imaging of materials with thermal cameras by Ralph Dinwiddie. At Argonne National Laboratory, Bill Ellingson led development of broader nondestructive testing methods to ensure safe continued use of components by monitoring material degradation after intervals of usage. Without damaging the components, the inspections revealed how materials responded in an environment over time. With ORNL researchers, Argonne scientists developed several nondestructive inspection technologies that were instrumental in determining component performance.

ORNL’s Pete Tortorelli and H. T. Lin stressed materials in environmental exposure chambers to learn their points of failure. Lab colleagues Jim Keiser and Irv Federer exposed samples to corrosive gases, temperatures up to 2550 F and pressures up to 500 psi in “Keiser rigs” that simulated conditions in turbines. These were also used by More, Tortorelli and Keiser to screen protective coatings needed in combustion environments.

Meanwhile, More characterized structures of stressed materials. “Karren More entered the picture as our microscopist, and that changed our world,” Lowden recalled. “To be able to see what was happening with transmission electron microscopy, and understand what was happening at that level, was incredible.” GE had access to some techniques in-house because of its large infrastructure. “But we got invaluable help from Karren on the fiber coatings,” Luthra said. “It helped us develop the fiber coatings faster.”

ORNL’s early findings encouraged industry to abandon carbon as a fiber coating. Carbon oxidized, turning into carbon monoxide and carbon dioxide, and volatilized, thinning the coating. ORNL engineers recommended oxidation-resistant boron nitride instead.

Moreover, Edgar Lara-Curzio modeled and tested the mechanical performance of CMC materials under different loading conditions and their resistance to fatigue, creep and rupture in ORNL’s High Temperature Materials Laboratory. In collaboration with Matt Ferber and Chun-Hway Hsueh, he implemented experimental and analytical methods to characterize the micromechanics of fiber–matrix interfaces. “These measurements were essential to quantify chemical bonding between fibers and matrix, residual stresses experienced by the fibers and friction between the fibers and the matrix during fiber sliding,” said Lara-Curzio, noting CMCs are tough mainly because interfacial coatings let fibers slide and bridge matrix cracks. He and Hsueh provided key information about how a single fiber slides in a ceramic matrix. Lara-Curzio, Ferber and Lowden then quantified the effect of the thickness of fiber coatings on sliding and discovered a value that optimized mechanical properties. Companies widely adopted this correlation to optimize their composites.

Back to the future

Today at GE, Luthra dreams of putting CMCs everywhere the engine gets hot—blades, nozzles, liners. To achieve this vision, the community has many technological mountains to climb. One is developing manufacturing processes that, unlike melt infiltration, do not produce excess silicon that can volatilize and form cracks in the matrix.

“Every decade we have increased [the heat metals can take] by about 50 degrees,” Luthra noted. Today CMC material can take up to 2400 F, but Luthra would like the next generation to reach 2700 F. “This is going to be as challenging as the development of the first ceramic composite,” he said.

To highlight these challenges, the U.S. Advanced Ceramics Association is creating an industry-driven roadmap for the development of 2700 F CMCs for advanced gas turbines. This roadmap will inform Congress about successes of 2400 F CMCs, encourage investment in the development of 2700 F CMCs and highlight the contributions of CMCs to the creation of high-paying U.S. manufacturing jobs, national security and the environment. USACA’s roadmap supports findings of a recent National Academy of Sciences study that concludes investment in gas turbine materials and coatings should be a high priority and that 2700 F CMCs could dramatically reduce or eliminate the need for cooling in engines, boost efficiency and lower weight. DOE national labs may once again be called upon to help discover high-performance materials and processes that can operate at higher temperatures and even more extreme environments.

Future CMCs will have to endure extremes on four time scales, depending on the application: 1 hour or less of hot time for launch vehicles; days for accident-tolerant fuels (e.g., if a cooling system goes out in a nuclear power plant); thousands of hours, the operating life of aircraft turbines; and over 30,000 hours for industrial gas turbines for power production.

A land-based gas turbine to generate electricity can be more demanding than an aircraft engine application because it spends much more time operating at high temperature, Luthra said. Advances in the next generation of 2700 F materials would enable breakthrough improvements in efficiency and emissions that could lower the cost of electricity.

The sky, after all, may not be the limit.

DOE's Advanced Manufacturing Office (AMO), formerly known as the Industrial Technologies Program, supports applied research, development and demonstration of new materials, information and processes that improve American manufacturing’s energy efficiency, as well as platform technologies for manufacturing clean energy products. AMO helped fund this research.

UT-Battelle manages ORNL for DOE’s Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit www.science.energy.gov. —by Dawn Levy

X
X
X
  • Filters

  • × Clear Filters

Kentucky Researchers First to Produce High Grade Rare Earths From Coal

University of Kentucky researchers have produced nearly pure rare earth concentrates from Kentucky coal using an environmentally-conscious and cost-effective process, a groundbreaking accomplishment in the energy industry.

Watching Atoms Move in Hybrid Perovskite Crystals Reveals Clues to Improving Solar Cells

The discovery of nanoscale changes deep inside hybrid perovskites could shed light on developing low-cost, high-efficiency solar cells. Using X-ray beams and lasers, a team of researchers led by the University of California San Diego discovered how the movement of ions in hybrid perovskites causes certain regions within the material to become better solar cells than other parts.

Quantum Dots Amplify Light with Electrical Pumping

In a breakthrough development, Los Alamos scientists have shown that they can successfully amplify light using electrically excited films of the chemically synthesized semiconductor nanocrystals known as quantum dots.

The Challenge of Estimating Alaska's Soil Carbon Stocks

A geospatial analysis determined the optimal distribution of sites needed to reliably estimate Alaska's vast soil carbon.

Strain-Free Epitaxy of Germanium Film on Mica

Germanium was the material of choice in the early history of electronic devices, and due to its high charge carrier mobility, it's making a comeback. It's generally grown on expensive single-crystal substrates, adding another challenge to making it sustainably viable for most applications. To address this aspect, researchers demonstrate an epitaxy method that incorporates van der Waals' forces to grow germanium on mica. They discuss their work in the Journal of Applied Physics.

Unplugging the Cellulose Biofuel Bottleneck

Molecular-level understanding of cellulose structure reveals why it resists degradation and could lead to cost-effective biofuels.

Detailed View of Immune Proteins Could Lead to New Pathogen-Defense Strategies

Biologists at Berkeley Lab and UC Berkeley used cryo-EM to resolve the structure of a ring of proteins used by the immune system to summon support when under attack, providing new insight into potential strategies for protection from pathogens. The researchers captured the high-resolution image of a protein ring, called an inflammasome, as it was bound to flagellin, a protein from the whiplike tail used by bacteria to propel themselves forward.

Unlocking the Secrets of Ebola

Scientists have identified a set of biomarkers that indicate which patients infected with the Ebola virus are most at risk of dying from the disease. The results come from one of the most in-depth studies ever of blood samples from patients with Ebola.

Scientists Make First Observations of How a Meteor-Like Shock Turns Silica Into Glass

Studies at the Department of Energy's SLAC National Accelerator Laboratory have made the first real-time observations of how silica - an abundant material in the Earth's crust - easily transforms into a dense glass when hit with a massive shock wave like one generated from a meteor impact.

How Fungal Enzymes Break Down Plant Cell Walls

Lignocellulose-degrading enzyme complexes could improve biofuel production.


  • Filters

  • × Clear Filters

Five Brookhaven Lab Scientists Named 2017 American Physical Society Fellows

Anatoly Frenkel, Morgan May, Rachid Nouicer, Eric Stach, and Peter Steinberg were recognized for their outstanding contributions to astrophysics, materials physics, and nuclear physics.

Argonne Appoints Chief of Staff

Megan Clifford has been named Chief of Staff at the U.S. Department of Energy's (DOE) Argonne National Laboratory, effective January 1, 2018.

Jefferson Lab Scientist Selected to Receive Francis Slack Award

Dr. Hari Areti, has been selected to receive the Francis G. Slack Award, established by the Southeastern Section of the American Physical Society, to honor excellence in service to Physics in the Southeastern U.S.

ORNL Wins Nine R&D 100 Awards

Researchers at the Department of Energy's Oak Ridge National Laboratory have received nine R&D 100 Awards in recognition of their significant advancements in science and technology.

Argonne Scientists Capture Several R&D 100 Awards

Innovative technologies developed by researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory recently earned several R&D 100 Awards.

Eight Los Alamos innovations win R&D 100 Awards

Eight Los Alamos National Laboratory technologies won R&D 100 Awards last week at R&D Magazine's annual ceremony in Orlando, Florida.

Physicist David Gates Named Editor-in-Chief of Plasma, a New Online Journal

Article announces David Gates' appointment as editor-in-chief of Plasma magazine

Argonne to Install Comanche System to Explore ARM Technology for High-Performance Computing

Argonne National Laboratory is collaborating with Hewlett Packard Enterprise (HPE) to provide system software expertise and a development ecosystem for a future high-performance computing (HPC) system based on 64-bit ARM processors.

CANDLE Shines in 2017 HPCwire Readers' and Editors' Choice Awards

Argonne National Laboratory has been recognized in the annual <em>HPCwire</em> Readers' and Editors' Choice Awards, presented at the 2017 International Conference for High Performance Computing, Networking, Storage and Analysis (SC17), in Denver, Colorado.

SLAC's Helen Quinn Honored with 2018 Benjamin Franklin Medal in Physics

Helen Quinn, a professor emerita at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University, will receive the 2018 Benjamin Franklin Medal in Physics - one of eight prestigious Franklin Institute Awards that will be handed out in Philadelphia next April.


  • Filters

  • × Clear Filters

The Challenge of Estimating Alaska's Soil Carbon Stocks

A geospatial analysis determined the optimal distribution of sites needed to reliably estimate Alaska's vast soil carbon.

Unplugging the Cellulose Biofuel Bottleneck

Molecular-level understanding of cellulose structure reveals why it resists degradation and could lead to cost-effective biofuels.

How Fungal Enzymes Break Down Plant Cell Walls

Lignocellulose-degrading enzyme complexes could improve biofuel production.

Stretching to Perfection of 2-D Semiconductors

Scientists use heat and mismatched surfaces to stretch films that can potentially improve the efficient operation of devices.

Simple is Beautiful in Quantum Computing

Defect spins in diamond were controlled with a simpler, geometric method, leading to faster computing.

The Effect of Hurricanes on Puerto Rico's Dry Forests

More frequent storms turn forests from carbon source to sink.

A Chemical Thermometer for Tropical Forests

Monoterpene measures how certain forests respond to heat stress.

Where a Leaf Lands and Lies Influences Carbon Levels in Soil for Years to Come

Whether carbon comes from leaves or needles affects how fast it decomposes, but where it ends up determines how long it's available.

Twisting Molecule Wrings More Power from Solar Cells

Readily rotating molecules let electrons last, resulting in higher solar cell efficiency.

Rules Are Only Suggestions in Heavy Elements

The arrangement of electrons in an exotic human-made element shows that certain properties of heavy elements cannot be predicted using lighter ones.


Spotlight

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University





Showing results

0-4 Of 2215