X
X
X

Video Captures Bubble-Blowing Battery in Action

PNNL researchers have created a unique video that shows oxygen bubbles inflating and later deflating inside a tiny lithium-air battery. The knowledge gained from the video could help make lithium-air batteries that are more compact, stable and can hold onto a charge longer.

Study Offers New Theoretical Approach to Describing Non-Equilibrium Phase Transitions

Two physicists at Argonne offered a way to mathematically describe a particular physics phenomenon called a phase transition in a system out of equilibrium. Such phenomena are central in physics, and understanding how they occur has been a long-held and vexing goal; their behavior and related effects are key to unlocking possibilities for new electronics and other next-generation technologies.

Berkeley Lab Scientists Discover New Atomically Layered, Thin Magnet

Berkeley Lab scientists have found an unexpected magnetic property in a 2-D material. The new atomically thin, flat magnet could have major implications for a wide range of applications, such as nanoscale memory, spintronic devices, and magnetic sensors.

Scientists Identify Chemical Causes of Battery "Capacity Fade"

Researchers at Argonne National Laboratory identified one of the major culprits in capacity fade of high-energy lithium-ion batteries.

Modeling Reveals How Policy Affects the Adoption of Solar Energy Photovoltaics in California

Researchers at the University of California, Riverside, inspired by efforts to promote green energy, are exploring the factors driving commercial customers in Southern California, both large and small, to purchase and install solar photovoltaic (PV) systems. As the group reports this week in the Journal of Renewable and Sustainable Energy, they built a model for commercial solar PV adoption to quantify the impact of government incentives and solar PV costs.

Machine Learning Dramatically Streamlines Search for More Efficient Chemical Reactions

A catalytic reaction may follow thousands of possible paths, and it can take years to identify which one it actually takes so scientists can tweak it and make it more efficient. Now researchers at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University have taken a big step toward cutting through this thicket of possibilities.

Freezing Lithium Batteries May Make Them Safer and Bendable

Columbia Engineering Professor Yuan Yang has developed a new method that could lead to lithium batteries that are safer, have longer battery life, and are bendable, providing new possibilities such as flexible smartphones. His new technique uses ice-templating to control the structure of the solid electrolyte for lithium batteries that are used in portable electronics, electric vehicles, and grid-level energy storage. The study is published online April 24 in Nano Letters.

New Study Reveals the Mystery Behind the Formation of Hollowed Nanoparticles During Metal Oxidation

In a newly published <i>Science</i> paper, Argonne and Temple University researchers reveal new knowledge about the behavior of metal nanoparticles when they undergo oxidation, by integrating X-ray imaging and computer modeling and simulation. This knowledge adds to our understanding of fundamental processes like oxidation and corrosion.

Rare Supernova Discovery Ushers in New Era for Cosmology

With help from a supernova-hunting pipeline based at NERSC, astronomers captured multiple images of a gravitationally lensed Type 1a supernova. This is currently the only one, but if astronomers can find more they may be able to measure Universal expansion within four percent accuracy. Luckily, Berkeley Lab researchers do have a method for finding more.

Making Batteries From Waste Glass Bottles

Researchers at the University of California, Riverside's Bourns College of Engineering have used waste glass bottles and a low-cost chemical process to create nanosilicon anodes for high-performance lithium-ion batteries. The batteries will extend the range of electric vehicles and plug-in hybrid electric vehicles, and provide more power with fewer charges to personal electronics like cell phones and laptops.


OU Engineering Professor Receives National Science Foundation Early CAREER Award

A University of Oklahoma Gallogly College of Engineering professor, Steven P. Crossley, is the recipient of a five-year, National Science Foundation Early CAREER Award in the amount of $548,829 for research that can be used to understand catalysts that are important for a broad range of chemical reactions ranging from the production of renewable fuels and chemicals for natural gas processing. The research will be integrated with educational and outreach programs intended for American Indian students, emphasizing the importance of sustainable energy.

3 Small Energy Firms to Collaborate with PNNL

Pacific Northwest National Laboratory is collaborating with three small businesses to address technical challenges concerning hydrogen for fuel cell cars, bio-coal and nanomaterial manufacturing.

ORNL to Collaborate with Five Small Businesses to Advance Energy Tech

Five small companies have been selected to partner with the Department of Energy's Oak Ridge National Laboratory to move technologies in commercial refrigeration systems, water power generation, bioenergy and battery manufacturing closer to the marketplace.

U.S. Department of Energy's INCITE Program Seeks Advanced Computational Research Proposals for 2018

The Department of Energy's INCITE program will be accepting proposals for high-impact, computationally intensive research campaigns in a broad array of science, engineering, and computer science domains.

New Berkeley Lab Project Turns Waste Heat to Electricity

A new Berkeley Lab project seeks to efficiently capture waste heat and convert it to electricity, potentially saving California up to $385 million per year. With a $2-million grant from the California Energy Commission, Berkeley Lab scientists will work with Alphabet Energy to create a cost-effective thermoelectric waste heat recovery system.

New SLAC Theory Institute Aims to Speed Research on Exotic Materials at Light Sources

A new institute at the Department of Energy's SLAC National Accelerator Laboratory is using the power of theory to search for new types of materials that could revolutionize society - by making it possible, for instance, to transmit electricity over power lines with no loss.

Lenvio Inc. Exclusively Licenses ORNL Malware Behavior Detection Technology

Virginia-based Lenvio Inc. has exclusively licensed a cyber security technology from the Department of Energy's Oak Ridge National Laboratory that can quickly detect malicious behavior in software not previously identified as a threat.

Argonne Scientist and Nobel Laureate Alexei Abrikosov Dies at 88

Alexei Abrikosov, an acclaimed physicist at the U.S. Department of Energy's Argonne National Laboratory who received the 2003 Nobel Prize in Physics for his work on superconducting materials, died Wednesday, March 29. He was 88.

Jefferson Lab Accomplishes Critical Milestones Toward Completion of 12 GeV Upgrade

The Continuous Electron Beam Accelerator Facility (CEBAF) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility has achieved two major commissioning milestones and is now entering the final stretch of work to conclude its first major upgrade. Recently, the CEBAF accelerator delivered electron beams into two of its experimental halls, Halls B and C, at energies not possible before the upgrade for commissioning of the experimental equipment currently in each hall. Data were recorded in each hall, which were then confirmed to be of sufficient quality to allow for particle identification, a primary indicator of good detector operation.

Valerie Taylor Named Argonne National Laboratory's Mathematics and Computer Science Division Director

Computer scientist Valerie Taylor has been appointed as the next director of the Mathematics and Computer Science division at Argonne, effective July 3, 2017.


The Roadmap to Quark Soup

Scientists discover new signposts in the quest to determine how matter from the early universe turned into the world we know today.

Neutrons Play the Lead to Protons in Dance Around "Double-Magic" Nucleus

Electric and magnetic properties of a radioactive atom provide unique insight into the nature of proton and neutron motion.

Ultrafast Imaging Reveals the Electron's New Clothes

Scientists use high-speed electrons to visualize "dress-like" distortions in the atomic lattice. This work reveals the vital role of electron-lattice interactions in manganites. This material could be used in data-storage devices with increased data density and reduced power requirements.

One Small Change Makes Solar Cells More Efficient

For years, scientists have explored using tiny drops of designer materials, called quantum dots, to make better solar cells. Adding small amounts of manganese decreases the ability of quantum dots to absorb light but increases the current produced by an average of 300%.

Electronic "Cyclones" at the Nanoscale

Through highly controlled synthesis, scientists controlled competing atomic forces to let spiral electronic structures form. These polar vortices can serve as a precursor to new phenomena in materials. The materials could be vital for ultra-low energy electronic devices.

In a Flash! A New Way for Making Ceramics

A new process controllably but instantly consolidates ceramic parts, potentially important for manufacturing.

Deciphering Material Properties at the Single-Atom Level

Scientists determine the precise location and identity of all 23,000 atoms in a nanoparticle.

Smallest Transistor Ever

It has long been thought that building nanometer-sized transistors was impossible. Simply put, the physics and atomic structural imperfections couldn't be overcome. However, scientists built fully functional, nanometer-sized transistors.

Creation of Artificial Atoms

For the first time, scientists created a tunable artificial atom in graphene. The results from this research demonstrate a viable, controllable, and reversible technique to confine electrons in graphene.

Developing Tools to Understand Lithium-Ion Battery Instabilities

Scientists develop tools to understand Li-ion battery instabilities, enabling the study of electrodes and solid-electrolyte interphase formation.


Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park




Story Tips from the Department of Energy's Oak Ridge National Laboratory, January 2017

Article ID: 667120

Released: 2017-01-04 09:05:40

Source Newsroom: Oak Ridge National Laboratory

  • Credit: ORNL

    Atomic arrangements inside the unit cell of an iron-based superconducting material show that reduction of unit cells along the c-axis is necessary for causing superconductivity.

  • Credit: ORNL

    Habitats of salmon could be preserved through the careful management of forests.

  • Credit: ORNL

    Oak Ridge National Laboratory’s supercomputer is opening new horizons for the Nature Inspired Machine Learning Team.

  • Credit: ORNL

    Neon atoms between graphene sheets poke the top sheet from below and stretch the crystalline lattice, forming a bubble at a pressure larger than that of the ocean at its greatest depth. The ORNL method can introduce large local strains into 2D lattices in cases where conventional methods fail.

  • Credit: ORNL

    ORNL scientists studied ways to enhance the proposed memory cell performance and minimize access times and energies, yielding a novel cryogenic, or low-temperature, design that may resolve a memory storage bottleneck, accelerating a pathway to next-generation computing.

SUPERCONDUCTIVITY – Crystal clear conclusion …

Hundreds of tables and plots from papers published about superconductivity are the focus of a Journal of Physics: Condensed Matter review paper that condenses this data into a single graph. “We were able to find a pattern throughout many scientists’ work that was never recognized because no one had taken the time to assemble all of the data,” said co-author Lance Konzen. He and ORNL’s Athena Safa Sefat conclude that superconducting properties of iron- and copper-based materials are highly dependent on the behavior of atomic arrangements inside the unit cells. They noted that their paper, titled “Lattice Parameters Guide Superconductivity in Iron-Arsenides,” is a resource that will guide materials chemists and could save considerable time. Konzen’s work was sponsored by the Department of Energy’s Workforce Development for Teachers and Scientists and the Science Undergraduate Laboratory Internship programs. [Contact: Ron Walli, (865) 576-0226; wallira@ornl.gov]

Image: https://www.ornl.gov/sites/default/files/news/images/01%20superconductivity%201.jpg

Cutline: Atomic arrangements inside the unit cell of an iron-based superconducting material show that reduction of unit cells along the c-axis is necessary for causing superconductivity.

ENVIRONMENT – Triple benefit …

Strategic thinning of forests in the Pacific Northwest and other parts of the United States plagued by fires could produce benefits on multiple levels, according to Rebecca Novello, a researcher at Oak Ridge National Laboratory. In a collaboration with Pacific Northwest National Laboratory and the Forest Service, Novello and Yetta Jager are developing decision support tools for thinning forest understory that could provide biomass for energy, decrease the incidence of high-intensity wildfires and preserve habitat for threatened and endangered salmon. “Climate change is a big driver of this research,” Jager said. “Among many other factors, increasing temperatures have shifted seasonal patterns of flow from those that salmon have adapted to and increased the number and duration of wildfires.” The three-year project began Oct. 1. [Contact: Ron Walli, (865) 576-0226; wallira@ornl.gov]

Image: https://www.ornl.gov/sites/default/files/news/images/02%20triple%20benefit%20tip%201.jpg

Cutline: Habitats of salmon could be preserved through the careful management of forests.

COMPUTING – Charting new territory …

From machine learning to neuromorphic architectures that enable greater computing flexibility and utility, Oak Ridge National Laboratory researchers are pushing boundaries with Titan. “We’re using deep learning to advance the state of the art in several challenging fields such as computer vision and speech recognition,” said Steven Young, a member of ORNL’s Intelligent Computing Research Team. Young noted that their approach is providing a promising tool in areas previously unexplored by computer scientists. For example, optimal networks for commercial datasets are vastly different than the optimal networks for scientific data. But by utilizing the 18,688 GPUs on Titan and an evolutionary algorithm, researchers can quickly find the best network for their problem. As a result, scientists are seeing and making sense of data that was previously either obscured or simply unavailable for analysis. [Contact: Ron Walli, (865) 576-0226; wallira@ornl.gov]

Image: https://www.ornl.gov/sites/default/files/news/images/03%20computing%20tip.jpg

Cutline: Oak Ridge National Laboratory’s supercomputer is opening new horizons for the Nature Inspired Machine Learning Team.

MATERIALS – Measuring and manipulating graphene …

Researchers at Oak Ridge National Laboratory found a simpler way to measure adhesion between graphene sheets, compared to a sophisticated method used in a 2015 study: They measured how much graphene deflects when neon atoms poke it from below to create “bubbles.” Each bubble’s curvature encodes properties such as sheet flexibility and adhesion. “We discovered a new method to measure adhesion of layered materials at very small length scales,” said Petro Maksymovych. “It’s a simple way to probe a large number of two-dimensional materials and ask how their mechanical properties vary with modifications. It also opens an avenue for atomic-scale control over 2D materials without defects, which may prove useful to achieve their full potential in future technologies.” Stacking atomically thin materials opens a pathway toward new energy and electronic applications. [Contact: Dawn Levy, (865) 576-6448; levyd@ornl.gov]

Image: https://www.ornl.gov/sites/default/files/news/images/04%20materials%20measuring%20tip%201.jpg

Cutline: Neon atoms between graphene sheets poke the top sheet from below and stretch the crystalline lattice, forming a bubble at a pressure larger than that of the ocean at its greatest depth. The ORNL method can introduce large local strains into 2D lattices in cases where conventional methods fail.

SUPERCOMPUTING – Resolving the bottleneck …

Scientists at Oak Ridge National Laboratory have proposed a novel cryogenic, or low-temperature, memory cell circuit design that may resolve a memory storage bottleneck, accelerating the pathway to exascale and quantum computing. The proposed design converges write, read and reset memory operations on the same circuit, enabling memory processing functions to operate faster and more efficiently. This could yield decreased access energies and access times and allow for more circuits to occupy less space. Details of the research were published in Superconductor Science and Technology and Physical Review E. [Contact: Sara Shoemaker, (865) 576-9219; shoemakerms@ornl.gov]

Image: https://www.ornl.gov/sites/default/files/news/images/05%20bottleneck%20tip.jpg

Cutline: ORNL scientists studied ways to enhance the proposed memory cell performance and minimize access times and energies, yielding a novel cryogenic, or low-temperature, design that may resolve a memory storage bottleneck, accelerating a pathway to next-generation computing.