Doe Science news source

The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-01-09 05:55:48
  • Article ID: 667318

Small, Efficient Solutions for a Big-Name Pollutant

Researchers designed an extremely efficient catalytic system to remove carbon monoxide.

  • Credit: Image courtesy of Zhu et al., J. Am. Chem. Soc. 137, 10156 (2015).

    The arrows represent a schematic illustration of the multiple reaction regimes for carbon monoxide (CO) oxidation with the PtFe-FeOx/TiO2 system. The dashed arrows represent reaction pathways that utilize the PtFe and FeOx interface, while the solid arrow represents a reaction pathway that uses the nanowire (NW) and TiO2 interface. The inset shows a scanning electron transmission micrograph of the nanowires, with platinum (Pt, green) in the core of the NW and iron (Fe, red) drawn to the surface.

The Science

Winter cold snaps often bring tragic stories of Americans killed by carbon monoxide, a colorless, odorless gas present in the emissions of gas-powered generators and vehicles. Several thousand more people are treated for carbon monoxide poisoning each year. While we currently rely on carbon monoxide detectors, new research points the way to a new approach: direct elimination of the gas. Collaborative research teams recently succeeded in creating tiny, uniquely structured wires that remove the gas from an enclosed area with a 100 percent efficiency at room temperature.

The Impact

This work could lead to a highly efficient and cost-effective method to remove carbon monoxide. More broadly, the scientists showed how to maximize the activity of the tiny wires made from platinum and iron using an encased structure. This result provides insight towards the development of advanced catalysts, which could impact an incredibly large number of applications, such as fuel cell reaction systems.

Summary

Carbon monoxide (CO) is a colorless and odorless gas that is potentially fatal at elevated concentrations due to the prevention of oxygen flow to organs and tissues. Though CO concentrations in the atmosphere have remained below the national safety standard for several decades, this gas still poses a threat to humans when elevated concentrations build up in enclosed areas. Though we currently rely on detectors to alert us of dangerous CO levels, the technology may soon exist to remove CO from indoor air instead. Collaborators from Oak Ridge National Laboratory, the University of Tennessee, Zhejiang University of Technology, and the Center for Functional Nanomaterials have teamed up to develop uniquely structured nanowires (NWs) that remove CO with a 100 percent conversion efficiency at room temperature. These one-dimensional nanostructures consist of a PtFe-FeOx core-shell composition and are supported on titanium dioxide (TiO2). Although the structures of these NWs seem rather complex, they are surprisingly simple to create. The team began by assembling PtFe NWs onto the TiO2 support. Then, they simply heated the NWs in air to cause Fe to diffuse to the surface of the NWs, thus creating the PtFe-FeOx core-shell structure. This structure serves to maximize the interfacial synergy of the system and to improve catalytic performance. Through the use of isotope mass spectrometry, the researchers identified three unique mechanisms for CO conversion. Two of the mechanisms involve the interface between the PtFe and FeOx phases of the NWs, with the remaining mechanism involving the interface between the NWs and the TiO2. All three of these reactions combine to give the NWs the extremely efficient 100 percent conversion of CO. Additionally, the presence of Fe and FeOx on Pt helps to prevent poisoning of the catalyst (deactivation through occupied binding sites). Upon application of slight heating (40 °C), NWs that had begun to decrease in activity due to poisoning were rejuvenated and resumed catalytic function at 100 percent conversion. The NWs remained stable and active through this process for many cycles, thus also illustrating their durability. This research can ideally be developed into a method for CO abatement, although the design of these unique NWs will also serve as inspiration for the design of advanced catalysts used in many different applications.

Funding

H.Z. was supported by Liane B. Russell Fellowship sponsored by the Laboratory Directed Research and Development Program at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy (DOE). Z.W. and S.D. were supported by the DOE, Office of Science, Chemical Sciences, Geosciences, and Biosciences Division. Part of the work, including the diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) study, was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science user facility. Electron microscopy work used resources of the Center for Functional Nanomaterials, which is a DOE Office of Science facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. Part of the work (x-ray photoelectron spectroscopy, G.M.V.) was supported by the DOE Office of Science’s Office of Basic Energy Sciences, Division of Materials Science and Engineering.

Publications

H. Zhu, Z. Wu, D. Su, G. Veith, H. Lu, P. Zhang, S.H. Chai, and S. Dai, “Constructing hierarchical interfaces: TiO2-supported PtFe-FeOx nanowires for room temperature CO oxidation.” Journal of the American Chemical Society 137, 10156 (2015). [DOI: 10.1021/jacs.5b07011]

X
X
X
  • Filters

  • × Clear Filters

Magnetic Curve Balls

A twisted array of atomic magnets were driven to move in a curved path, a needed level of control for use in future memory devices.

New "Gold Standard" for Flexible Electronics

Simple, economical process makes large-diameter, high-performance, thin, transparent, and conductive foils for bendable LEDs and more.

Microbe Mystery Solved: What Happened to the Deepwater Horizon Oil Plume

The Deepwater Horizon oil spill in the Gulf of Mexico in 2010 is one of the most studied spills in history, yet scientists haven't agreed on the role of microbes in eating up the oil. Now a research team at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has identified all of the principal oil-degrading bacteria as well as their mechanisms for chewing up the many different components that make up the released crude oil.

New Class of 'Soft' Semiconductors Could Transform HD Displays

New research by Berkeley Lab scientists could help usher in a new generation of high-definition displays, optoelectronic devices, photodetectors, and more. They have shown that a class of "soft" semiconductors can be used to emit multiple, bright colors from a single nanowire at resolutions as small as 500 nanometers. The work could challenge quantum dot displays that rely upon traditional semiconductor nanocrystals to emit light.

Could This Strategy Bring High-Speed Communications to the Deep Sea?

A new strategy for sending acoustic waves through water could potentially open up the world of high-speed communications to divers, marine research vessels, remote ocean monitors, deep sea robots, and submarines. By taking advantage of the dynamic rotation generated as the acoustic wave travels, also known as its orbital angular momentum, Berkeley Lab researchers were able to pack more channels onto a single frequency, effectively increasing the amount of information capable of being transmitted.

2-D Material's Traits Could Send Electronics R&D Spinning in New Directions

Researchers created an atomically thin material at Berkeley Lab and used X-rays to measure its exotic and durable properties that make it a promising candidate for a budding branch of electronics known as "spintronics."

Manipulating Earth-Abundant Materials to Harness the Sun's Energy

New material based on common iron ore can help turn intermittent sunlight and water into long-lasting fuel.

Ames Lab Scientists' Surprising Discovery: Making Ferromagnets Stronger by Adding Non-Magnetic Element

Researchers at the U.S. Department of Energy's Ames Laboratory discovered that they could functionalize magnetic materials through a thoroughly unlikely method, by adding amounts of the virtually non-magnetic element scandium to a gadolinium-germanium alloy. It was so unlikely they called it a "counterintuitive experimental finding" in their published work on the research.

Cut U.S. Commercial Building Energy Use 29% with Widespread Controls

The U.S. could slash its energy use by the equivalent of what is currently used by 12 to 15 million Americans if commercial buildings fully used energy-efficiency controls nationwide.

How a Single Chemical Bond Balances Cells Between Life and Death

With SLAC's X-ray laser and synchrotron, scientists measured exactly how much energy goes into keeping a crucial chemical bond from triggering a cell's death spiral.


  • Filters

  • × Clear Filters

Protein Data Takes Significant Step Forward in Medicine

Scientists at the Pacific Northwest National Laboratory and Oregon Health & Science University are part of a nationwide effort to learn more about the role of proteins in cancer biology and to use that information to benefit cancer patients.

The Electrochemical Society and Toyota North America Announce 2017-2018 Fellowship Winners for Projects in Green Energy Technology

The ECS Toyota Young Investigator Fellowship Selection Committee has chosen three winners who will receive $50,000 fellowship awards each for projects in green energy technology. The awardees are Dr. Ahmet Kusoglu, Lawrence Berkeley National Laboratory; Professor Julie Renner, Case Western Reserve University; and Professor Shuhui Sun, Institut National de la Rechersche Scientifique (INRS).

Chicago Quantum Exchange to Create Technologically Transformative Ecosystem

The University of Chicago is collaborating with the U.S. Department of Energy's Argonne National Laboratory and Fermi National Accelerator Laboratory to launch an intellectual hub for advancing academic, industrial and governmental efforts in the science and engineering of quantum information.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Cynthia Jenks Named Director of Argonne's Chemical Sciences and Engineering Division

Argonne has named Cynthia Jenks the next director of the laboratory's Chemical Sciences and Engineering Division. Jenks currently serves as the assistant director for scientific planning and the director of the Chemical and Biological Sciences Division at Ames Laboratory.

Argonne-Developed Technology for Producing Graphene Wins TechConnect National Innovation Award

A method that significantly cuts the time and cost needed to grow graphene has won a 2017 TechConnect National Innovation Award. This is the second year in a row that a team at Argonne's Center for Nanoscale Materials has received this award.

Honeywell UOP and Argonne Seek Research Collaborations in Catalysis Under Technologist in Residence Program

Researchers at Argonne are collaborating with Honeywell UOP scientists to explore innovative energy and chemicals production.

Follow the Fantastic Voyage of the ICARUS Neutrino Detector

The ICARUS neutrino detector, born at Gran Sasso National Lab in Italy and refurbished at CERN, will make its way across the sea to Fermilab this summer. Follow along using an interactive map online.

JSA Awards Graduate Fellowships for Research at Jefferson Lab

Jefferson Sciences Associates announced today the award of eight JSA/Jefferson Lab graduate fellowships. The doctoral students will use the fellowships to support their advanced studies at their universities and conduct research at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) - a U.S. Department of Energy nuclear physics laboratory managed and operated by JSA, a joint venture between SURA and PAE Applied Technologies.

Muon Magnet's Moment Has Arrived

On May 31, the 50-foot-wide superconducting electromagnet at the center of the Muon g-2 experiment saw its first beam of muon particles from Fermilab's accelerators, kicking off a three-year effort to measure just what happens to those particles when placed in a stunningly precise magnetic field. The answer could rewrite scientists' picture of the universe and how it works.


  • Filters

  • × Clear Filters

Graphene Ribbons Result in 100-Fold Increase in Gold Catalyst's Performance

Bottom-up synthesis of tunable carbon nanoribbons provides a new route to enhance industrial, automotive reactions.

Breaking the Rules to Make Electricity from Waste Heat

More atomic bonds is the key for performance in a newly discovered family of cage-structured compounds.

Magnetic Curve Balls

A twisted array of atomic magnets were driven to move in a curved path, a needed level of control for use in future memory devices.

New "Gold Standard" for Flexible Electronics

Simple, economical process makes large-diameter, high-performance, thin, transparent, and conductive foils for bendable LEDs and more.

New Class of Porous Materials Better Separates Carbon Dioxide from Other Gases

Enhanced stability in the presence of water could help reduce smokestack emissions of greenhouse gases.

Manipulating Earth-Abundant Materials to Harness the Sun's Energy

New material based on common iron ore can help turn intermittent sunlight and water into long-lasting fuel.

Oxygen: The Jekyll and Hyde of Biofuels

Scientists are devising ways to protect plants, biofuels and, ultimately, the atmosphere itself from damage caused by an element that sustains life on earth.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.

New Perspectives Into Arctic Cloud Phases

Teamwork provides insight into complicated cloud processes that are important to potential environmental changes in the Arctic.


Spotlight

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park





Showing results

0-4 Of 2215