Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-01-11 08:05:20
  • Article ID: 667510

Brookhaven National Laboratory's Top-10 Science Successes of 2016

Brookhaven National Laboratory’s Top-10 Science Successes of 2016

UPTON, NY—From advances in accelerators and experiments exploring the building blocks of matter and making medical isotopes to new revelations about superconductors, nanomaterials, and biofuels, 2016 was a year of accomplishment at the U.S. Department of Energy’s Brookhaven National Laboratory. Here are our Top-10 highlights.

Scientists Model the "Flicker" of Gluons in Subatomic Smashups

Scientists exploring the dynamic behavior of particles emerging from subatomic smashups at the Relativistic Heavy Ion Collider (RHIC), a particle collider used for nuclear physics experiments at Brookhaven Lab, are increasingly interested in the role of gluons. These glue-like particles ordinarily bind quarks within protons and neutrons, and appear to play an outsized role in establishing key particle properties. A model developed in 2016 by nuclear theorists at Brookhaven reveals that a high degree of gluon fluctuation—a kind of flickering rearrangement in the distribution of gluon density within individual protons—could help explain some of the remarkable results at RHIC and also in nuclear physics experiments at the Large Hadron Collider (LHC) in Europe. The model describes how the structure of a seemingly simple proton can fluctuate as gluons continuously split and recombine, essentially flickering in and out of existence like the light of fireflies blinking on and off in the nighttime sky. Understanding this behavior is essential to interpreting what happens when protons strike larger particles such as gold or lead ions in particle collisions at RHIC and the LHC.

Beam-Beam Compensation Scheme Doubles Proton-Proton Collision Rates at RHIC

Accelerator physicists at Brookhaven National Laboratory have successfully implemented an innovative scheme for increasing proton collision rates at the Relativistic Heavy Ion Collider (RHIC), giving scientists more data to sift through to answer important nuclear physics questions, including the search for the source of proton spin.  RHIC is the world's only polarized proton collider, capable of sending beams of protons around its 2.4-mile-circumference racetrack with their internal magnetic axes (also known as spins) aligned in a chosen direction. Colliding beams of such "spin polarized" protons and manipulating the spin directions gives scientists a way to explore how their internal building blocks, quarks and gluons, contribute to this intrinsic particle property. But getting protons to collide is an ongoing challenge because, as one beam of these positively charged particles passes through the other, the particles' like charges make them want to move away from one another. Brookhaven accelerator physicists use a beam of oppositely charged particles, electrons, to compensate for the head-on beam-beam effects. As the protons pass through the negatively charged electron beam, they experience a kick in the opposite direction from the repulsive force created by their like-sign positive charges. The kick from this “electron lensing” nudges the protons back toward the center of the beam, so far doubling the peak and average “luminosity” (measures related to collision rates) at RHIC.

Lab Boosts Production of Radioisotopes for Diagnostics and Therapeutics

Upgrades to the Brookhaven Linac Isotope Producer (BLIP), the Lab’s radioisotope production and research facility, have increased the yield of key medical isotopes used to diagnose and treat diseases. Many of these isotopes can only be produced by nuclear reactions that rely on high-energy particle accelerators like those that feed particle beams to fundamental nuclear physics experiments at the Relativistic Heavy Ion Collider (RHIC), part of Brookhaven’s flagship collider-accelerator complex. The upgrades at BLIP increased the intensity of the particle beams used to trigger isotope-producing reactions in target materials, and also introduced a novel system for scanning the beam across the targets to maximize their use. Since early 2016, these improvements have contributed to increased production of strontium-82 (Sr-82), an isotope used for cardiac imaging, and to research and development on actinium-225 (Ac-225), an isotope that may be a promising treatment for many forms of cancer, including leukemia and melanoma.  

catalyst for converting methane, the main component of abundant natural gas, directly to methanol at fairly low temperatures. Refining this catalyst could lead to a major commercial breakthrough—an inexpensive way to convert methane into methanol and other fuels or feedstocks for the synthesis of commodity goods such as plastics, paints, and textiles. The catalyst is made of inexpensive cerium dioxide (ceria) particles on a copper-oxide surface, which react with methane to free reactive hydrocarbon intermediates. Water provides hydroxide (OH) groups to react with the intermediates, producing methanol at high yield and low temperature. This reaction beats current two-step processes, where the first step is energy-intensive and expensive, as well as other attempts at one-step reactions where higher temperatures convert most of the useful hydrocarbon building blocks into carbon monoxide and carbon dioxide rather than methanol.

DNA Shaping Up to be Ideal Framework for Rationally Designed Nanostructures

In a series of papers, Brookhaven scientists working at the Lab’s Center for Functional Nanomaterials (CFN) used DNA as a programmable nanoscale building material, driving particles measuring just billionths of a meter to self-assemble into a wide variety of three-dimensional lattice structures. The scaffold-like frames made of DNA can even form interconnecting modules, or hold nanoparticles inside with DNA arms as programmable cages. The scientists verified the frame structures and nanoparticle arrangements using cryo-electron microscopy (a type of microscopy conducted at very low temperatures) at the CFN and Brookhaven's Biology Department, and x-ray scattering at the National Synchrotron Light Source II (NSLS-II). In each case, the external and internal binding properties and shapes of the precisely designed DNA frames control the structure of the resulting assemblies. This gives the scientists a way to engineer different lattices and architectures without having to manipulate the individual particles. The method opens up opportunities for rationally designing nanomaterials with optical, electric, and/or magnetic properties that can be enhanced or optimized by precisely organizing functional components. Some examples include targeted light-absorbing materials that harness solar energy, or magnetic materials that increase information-storage capacity.

why certain copper-oxide (cuprate) materials can conduct electricity without resistance at temperatures well above those required by conventional superconductors. After growing and analyzing thousands of precisely engineered samples of a cuprate known as LSCO (containing lanthanum, strontium, copper, and oxygen), they determined that LSCO’s "critical" superconducting temperature is controlled by the density of electron pairs—the number of electron pairs per unit area—instead of the strength of the electron pairing interaction, challenging a standard theory. If the team is correct, then it seems that small, local pairs of electrons essentially form a "superfluid" that flows without resistance. Previous experiments have established that the size of electron pairs is much smaller in cuprates than in conventional superconductors, whose pairs are so large that they overlap. Understanding what interaction makes the electron pairs so small in cuprates is the next step in the quest to solve the mystery of high-temperature superconductivity. Cracking this mystery may pave the way for engineering materials that become superconducting at room temperature—a capability that could transform the way energy is produced, transmitted, and used. 

Scientists Find Static "Stripes" of Electrical Charge in Copper-Oxide Superconductor

Brookhaven scientists discovered another clue to understanding the electronic ordering in copper-oxide superconductors. Using x-rays at Brookhaven’s National Synchrotron Light Source II (NSLS-II), they found evidence that static “charge stripes” (fixed arrangements of charges) coexist with the material’s ability to conduct electricity without resistance. Previously, the exact nature of these stripes—specifically, whether they fluctuate over time and whether they work together with or against the electrons that pair up and flow without energy loss—has remained a mystery. The new evidence for the coexistence of superconductivity with static (as opposed to fluctuating) charge stripes suggests that this static ordering of electrical charges may cooperate rather than compete with superconductivity. If this is the case, then the electrons that periodically bunch together to form the static charge stripes may be separated in space from the free-moving electron pairs required for superconductivity. Understanding the detailed physics of how these compounds work should point the way toward a recipe for how to raise the superconducting temperature.

Computational Tools Help Unlock Nanostructures, Secrets of the Universe, and Untapped Computing Resources

Computational tools play a role in every area of science at Brookhaven. Two standouts of 2016 include sorting out structures at the nanoscale and a new, efficient way to sift through petabytes of data generated at the Large Hadron Collider (LHC). In the first example, scientists used advanced data analytics to make sense of “fuzzy” data generated by x-rays scattering off clusters of gold nanoparticles. The analysis revealed two unique atomic arrangements of the gold particles—somewhat like the differing arrangements of carbon atoms that result in diamond and graphite. The discovery gives engineers a new material to explore, along with the possibility of finding other “polymorphic” nanomaterials with potentially divergent functions. The second example was a demonstration of a “workload management system” that breaks up complex data analysis jobs and simulations for the LHC's ATLAS and ALICE experiments and "feeds" them into untapped pockets of available supercomputing time—similar to the way tiny pebbles can fill empty spaces between larger rocks in a jar. Mobilizing these previously unusable supercomputing capabilities, valued at millions of dollars per year, could quickly and effectively enable cutting-edge science in many data-intensive fields.

Study Shows Trees with Altered Lignin are Better for Biofuels

Scientists at Brookhaven have made a major advance that could lead to increased production of biofuels and other sustainable plant-based products. They engineered a novel enzyme involved in the synthesis of lignin—a natural component of the cellular scaffolding that enables plants to grow to great heights but simultaneously makes them hard to break down. Lignin forms a barrier of sorts around other plant cell-wall polymers, making it difficult for digestive enzymes to release their carbon-rich building blocks—the simple sugars needed to create biofuels like ethanol. Past approaches to limit lignin have weakened plants, reduced biomass, or both. The new enzyme changes lignin in a way that increases access to the biofuel building blocks without inhibiting plant growth. The engineered enzyme resulted in healthy aspen trees whose woody biomass released 62 percent more simple sugars than native plants, and an almost 50 percent increase in ethanol yield.

Chiral Magnetic Effect Generates Quantum Current

Scientists at Brookhaven Lab and Stony Brook University have discovered a new way to generate very low-resistance electric current in a new class of materials. The discovery, made in part using x-ray beams at Brookhaven’s National Synchrotron Light Source, points to a range of potential applications in energy, quantum computing, and medical imaging, and possibly even a new mechanism for inducing superconductivity—the ability of some materials to carry current with no energy loss. The materials scientists were surprised when they first measured the significant drop in electrical resistance and the accompanying dramatic increase in conductivity when the material, zirconium pentatelluride, was placed in parallel electric and magnetic fields. But a nuclear theorist who had explored similar behavior of subatomic particles in the magnetic fields created in collisions at Brookhaven's Relativistic Heavy Ion Collider (RHIC) suggested there could be a link. In both cases, the dramatic separation of charges could be triggered by a chiral imbalance—the separation of right- and left-"handed" particles (a property determined by whether a particle's spin is aligned with or against its direction of motion). When the scientists compared their measurements with mathematical predictions of how powerful the increase in conductivity should be with increasing magnetic field strength, they found definitive evidence of this long-predicted chiral magnetic effect—the first such evidence in a materials science laboratory.

This research was funded by the DOE Office of Science. NSLS/NSLS-II, CFN, and RHIC are DOE Office of Science User Facilities.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy.  The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.  For more information, please visit science.energy.gov.

X
X
X
  • Filters

  • × Clear Filters

Kentucky Researchers First to Produce High Grade Rare Earths From Coal

University of Kentucky researchers have produced nearly pure rare earth concentrates from Kentucky coal using an environmentally-conscious and cost-effective process, a groundbreaking accomplishment in the energy industry.

Watching Atoms Move in Hybrid Perovskite Crystals Reveals Clues to Improving Solar Cells

The discovery of nanoscale changes deep inside hybrid perovskites could shed light on developing low-cost, high-efficiency solar cells. Using X-ray beams and lasers, a team of researchers led by the University of California San Diego discovered how the movement of ions in hybrid perovskites causes certain regions within the material to become better solar cells than other parts.

Quantum Dots Amplify Light with Electrical Pumping

In a breakthrough development, Los Alamos scientists have shown that they can successfully amplify light using electrically excited films of the chemically synthesized semiconductor nanocrystals known as quantum dots.

The Challenge of Estimating Alaska's Soil Carbon Stocks

A geospatial analysis determined the optimal distribution of sites needed to reliably estimate Alaska's vast soil carbon.

Strain-Free Epitaxy of Germanium Film on Mica

Germanium was the material of choice in the early history of electronic devices, and due to its high charge carrier mobility, it's making a comeback. It's generally grown on expensive single-crystal substrates, adding another challenge to making it sustainably viable for most applications. To address this aspect, researchers demonstrate an epitaxy method that incorporates van der Waals' forces to grow germanium on mica. They discuss their work in the Journal of Applied Physics.

Unplugging the Cellulose Biofuel Bottleneck

Molecular-level understanding of cellulose structure reveals why it resists degradation and could lead to cost-effective biofuels.

Detailed View of Immune Proteins Could Lead to New Pathogen-Defense Strategies

Biologists at Berkeley Lab and UC Berkeley used cryo-EM to resolve the structure of a ring of proteins used by the immune system to summon support when under attack, providing new insight into potential strategies for protection from pathogens. The researchers captured the high-resolution image of a protein ring, called an inflammasome, as it was bound to flagellin, a protein from the whiplike tail used by bacteria to propel themselves forward.

Unlocking the Secrets of Ebola

Scientists have identified a set of biomarkers that indicate which patients infected with the Ebola virus are most at risk of dying from the disease. The results come from one of the most in-depth studies ever of blood samples from patients with Ebola.

Scientists Make First Observations of How a Meteor-Like Shock Turns Silica Into Glass

Studies at the Department of Energy's SLAC National Accelerator Laboratory have made the first real-time observations of how silica - an abundant material in the Earth's crust - easily transforms into a dense glass when hit with a massive shock wave like one generated from a meteor impact.

How Fungal Enzymes Break Down Plant Cell Walls

Lignocellulose-degrading enzyme complexes could improve biofuel production.


  • Filters

  • × Clear Filters

Jefferson Lab Scientist Selected to Receive Francis Slack Award

Dr. Hari Areti, has been selected to receive the Francis G. Slack Award, established by the Southeastern Section of the American Physical Society, to honor excellence in service to Physics in the Southeastern U.S.

ORNL Wins Nine R&D 100 Awards

Researchers at the Department of Energy's Oak Ridge National Laboratory have received nine R&D 100 Awards in recognition of their significant advancements in science and technology.

Argonne Scientists Capture Several R&D 100 Awards

Innovative technologies developed by researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory recently earned several R&D 100 Awards.

Eight Los Alamos innovations win R&D 100 Awards

Eight Los Alamos National Laboratory technologies won R&D 100 Awards last week at R&D Magazine's annual ceremony in Orlando, Florida.

Physicist David Gates Named Editor-in-Chief of Plasma, a New Online Journal

Article announces David Gates' appointment as editor-in-chief of Plasma magazine

Argonne to Install Comanche System to Explore ARM Technology for High-Performance Computing

Argonne National Laboratory is collaborating with Hewlett Packard Enterprise (HPE) to provide system software expertise and a development ecosystem for a future high-performance computing (HPC) system based on 64-bit ARM processors.

CANDLE Shines in 2017 HPCwire Readers' and Editors' Choice Awards

Argonne National Laboratory has been recognized in the annual <em>HPCwire</em> Readers' and Editors' Choice Awards, presented at the 2017 International Conference for High Performance Computing, Networking, Storage and Analysis (SC17), in Denver, Colorado.

SLAC's Helen Quinn Honored with 2018 Benjamin Franklin Medal in Physics

Helen Quinn, a professor emerita at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University, will receive the 2018 Benjamin Franklin Medal in Physics - one of eight prestigious Franklin Institute Awards that will be handed out in Philadelphia next April.

PPPL Honors Grierson and Greenough for Distinguished Research and Engineering Achievements

Article describes PPPL's presentation of 2017 Kaul Prize and Distinguished Engineering Fellow awards.

INCITE Grants of 5.95 Billion Hours Awarded to 55 Computational Research Projects

The U.S. Department of Energy's Office of Science announced 55 projects with high potential for accelerating discovery through its Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. The projects will share 5.95 billion core-hours on three of America's most powerful supercomputers dedicated to capability-limited open science and support a broad range of large-scale research campaigns from infectious disease treatment to next-generation materials development.


  • Filters

  • × Clear Filters

The Challenge of Estimating Alaska's Soil Carbon Stocks

A geospatial analysis determined the optimal distribution of sites needed to reliably estimate Alaska's vast soil carbon.

Unplugging the Cellulose Biofuel Bottleneck

Molecular-level understanding of cellulose structure reveals why it resists degradation and could lead to cost-effective biofuels.

How Fungal Enzymes Break Down Plant Cell Walls

Lignocellulose-degrading enzyme complexes could improve biofuel production.

Stretching to Perfection of 2-D Semiconductors

Scientists use heat and mismatched surfaces to stretch films that can potentially improve the efficient operation of devices.

Simple is Beautiful in Quantum Computing

Defect spins in diamond were controlled with a simpler, geometric method, leading to faster computing.

The Effect of Hurricanes on Puerto Rico's Dry Forests

More frequent storms turn forests from carbon source to sink.

A Chemical Thermometer for Tropical Forests

Monoterpene measures how certain forests respond to heat stress.

Where a Leaf Lands and Lies Influences Carbon Levels in Soil for Years to Come

Whether carbon comes from leaves or needles affects how fast it decomposes, but where it ends up determines how long it's available.

Twisting Molecule Wrings More Power from Solar Cells

Readily rotating molecules let electrons last, resulting in higher solar cell efficiency.

Rules Are Only Suggestions in Heavy Elements

The arrangement of electrons in an exotic human-made element shows that certain properties of heavy elements cannot be predicted using lighter ones.


Spotlight

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University





Showing results

0-4 Of 2215