X
X
X

Machine Learning Dramatically Streamlines Search for More Efficient Chemical Reactions

A catalytic reaction may follow thousands of possible paths, and it can take years to identify which one it actually takes so scientists can tweak it and make it more efficient. Now researchers at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University have taken a big step toward cutting through this thicket of possibilities.

Freezing Lithium Batteries May Make Them Safer and Bendable

Columbia Engineering Professor Yuan Yang has developed a new method that could lead to lithium batteries that are safer, have longer battery life, and are bendable, providing new possibilities such as flexible smartphones. His new technique uses ice-templating to control the structure of the solid electrolyte for lithium batteries that are used in portable electronics, electric vehicles, and grid-level energy storage. The study is published online April 24 in Nano Letters.

New Study Reveals the Mystery Behind the Formation of Hollowed Nanoparticles During Metal Oxidation

In a newly published <i>Science</i> paper, Argonne and Temple University researchers reveal new knowledge about the behavior of metal nanoparticles when they undergo oxidation, by integrating X-ray imaging and computer modeling and simulation. This knowledge adds to our understanding of fundamental processes like oxidation and corrosion.

Rare Supernova Discovery Ushers in New Era for Cosmology

With help from a supernova-hunting pipeline based at NERSC, astronomers captured multiple images of a gravitationally lensed Type 1a supernova. This is currently the only one, but if astronomers can find more they may be able to measure Universal expansion within four percent accuracy. Luckily, Berkeley Lab researchers do have a method for finding more.

Making Batteries From Waste Glass Bottles

Researchers at the University of California, Riverside's Bourns College of Engineering have used waste glass bottles and a low-cost chemical process to create nanosilicon anodes for high-performance lithium-ion batteries. The batteries will extend the range of electric vehicles and plug-in hybrid electric vehicles, and provide more power with fewer charges to personal electronics like cell phones and laptops.

Changing the Game

High performance computing researcher Shuaiwen Leon Song asked if hardware called 3D stacked memory could do something it was never designed to do--help render 3D graphics.

A Scientific Advance for Cool Clothing: Temperature-Wise, That Is

Stanford University researchers, with the aid of the Comet supercomputer at the San Diego Supercomputer at UC San Diego, have engineered a low-cost plastic material that could become the basis for clothing that cools the wearer, reducing the need for energy-consuming air conditioning.

Adjusting Solar Panel Angles a Few Times a Year Makes Them More Efficient

With Earth Day approaching, new research from Binghamton University-State of New York could help U.S. residents save more energy, regardless of location, if they adjust the angles of solar panels four to five times a year.

A Real CAM-Do Attitude

A multi-institutional team used resources at the Oak Ridge Leadership Computing Facility to catalog how desert plants photosynthetic processes vary. The study could help scientists engineer drought-resistant crops for food and fuel.

Predictive Power

The Consortium for Advanced Simulation of Light Water Reactors carried out the largest time-dependent simulation of a nuclear reactor ever to support Tennessee Valley Authority and Westinghouse Electric Company during the startup of Watts Bar Unit 2, the first new US nuclear reactor in 20 years. The simulation was carried out primarily on OLCF resources.


ORNL to Collaborate with Five Small Businesses to Advance Energy Tech

Five small companies have been selected to partner with the Department of Energy's Oak Ridge National Laboratory to move technologies in commercial refrigeration systems, water power generation, bioenergy and battery manufacturing closer to the marketplace.

U.S. Department of Energy's INCITE Program Seeks Advanced Computational Research Proposals for 2018

The Department of Energy's INCITE program will be accepting proposals for high-impact, computationally intensive research campaigns in a broad array of science, engineering, and computer science domains.

New Berkeley Lab Project Turns Waste Heat to Electricity

A new Berkeley Lab project seeks to efficiently capture waste heat and convert it to electricity, potentially saving California up to $385 million per year. With a $2-million grant from the California Energy Commission, Berkeley Lab scientists will work with Alphabet Energy to create a cost-effective thermoelectric waste heat recovery system.

New SLAC Theory Institute Aims to Speed Research on Exotic Materials at Light Sources

A new institute at the Department of Energy's SLAC National Accelerator Laboratory is using the power of theory to search for new types of materials that could revolutionize society - by making it possible, for instance, to transmit electricity over power lines with no loss.

Lenvio Inc. Exclusively Licenses ORNL Malware Behavior Detection Technology

Virginia-based Lenvio Inc. has exclusively licensed a cyber security technology from the Department of Energy's Oak Ridge National Laboratory that can quickly detect malicious behavior in software not previously identified as a threat.

Argonne Scientist and Nobel Laureate Alexei Abrikosov Dies at 88

Alexei Abrikosov, an acclaimed physicist at the U.S. Department of Energy's Argonne National Laboratory who received the 2003 Nobel Prize in Physics for his work on superconducting materials, died Wednesday, March 29. He was 88.

Jefferson Lab Accomplishes Critical Milestones Toward Completion of 12 GeV Upgrade

The Continuous Electron Beam Accelerator Facility (CEBAF) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility has achieved two major commissioning milestones and is now entering the final stretch of work to conclude its first major upgrade. Recently, the CEBAF accelerator delivered electron beams into two of its experimental halls, Halls B and C, at energies not possible before the upgrade for commissioning of the experimental equipment currently in each hall. Data were recorded in each hall, which were then confirmed to be of sufficient quality to allow for particle identification, a primary indicator of good detector operation.

Valerie Taylor Named Argonne National Laboratory's Mathematics and Computer Science Division Director

Computer scientist Valerie Taylor has been appointed as the next director of the Mathematics and Computer Science division at Argonne, effective July 3, 2017.

Three SLAC Employees Awarded Lab's Highest Honor

At a March 7 ceremony, three employees of the Department of Energy's SLAC National Accelerator Laboratory were awarded the lab's highest honor ­- the SLAC Director's Award.

Dan Sinars Represents Sandia in First Energy Leadership Class

Dan Sinars, a senior manager in Sandia National Laboratories' pulsed power center, which built and operates the Z facility, is the sole representative from a nuclear weapons lab in a new Department of Energy leadership program that recently visited Sandia.


The Roadmap to Quark Soup

Scientists discover new signposts in the quest to determine how matter from the early universe turned into the world we know today.

Neutrons Play the Lead to Protons in Dance Around "Double-Magic" Nucleus

Electric and magnetic properties of a radioactive atom provide unique insight into the nature of proton and neutron motion.

Ultrafast Imaging Reveals the Electron's New Clothes

Scientists use high-speed electrons to visualize "dress-like" distortions in the atomic lattice. This work reveals the vital role of electron-lattice interactions in manganites. This material could be used in data-storage devices with increased data density and reduced power requirements.

One Small Change Makes Solar Cells More Efficient

For years, scientists have explored using tiny drops of designer materials, called quantum dots, to make better solar cells. Adding small amounts of manganese decreases the ability of quantum dots to absorb light but increases the current produced by an average of 300%.

Electronic "Cyclones" at the Nanoscale

Through highly controlled synthesis, scientists controlled competing atomic forces to let spiral electronic structures form. These polar vortices can serve as a precursor to new phenomena in materials. The materials could be vital for ultra-low energy electronic devices.

In a Flash! A New Way for Making Ceramics

A new process controllably but instantly consolidates ceramic parts, potentially important for manufacturing.

Deciphering Material Properties at the Single-Atom Level

Scientists determine the precise location and identity of all 23,000 atoms in a nanoparticle.

Smallest Transistor Ever

It has long been thought that building nanometer-sized transistors was impossible. Simply put, the physics and atomic structural imperfections couldn't be overcome. However, scientists built fully functional, nanometer-sized transistors.

Creation of Artificial Atoms

For the first time, scientists created a tunable artificial atom in graphene. The results from this research demonstrate a viable, controllable, and reversible technique to confine electrons in graphene.

Developing Tools to Understand Lithium-Ion Battery Instabilities

Scientists develop tools to understand Li-ion battery instabilities, enabling the study of electrodes and solid-electrolyte interphase formation.


Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park




Cracking the Mystery of Perfect Efficiency: Investigating Superconductors

Article ID: 670861

Released: 2017-03-09 08:05:43

Source Newsroom: Department of Energy, Office of Science

  • Credit: Image is taken from the Report of the Basic Energy Sciences Workshop on Superconductivity, May 8-11, 2006

    This figure shows how electrons pair up to cause superconductivity. Instead of traveling independently, the electrons couple into pairs that flow through metal without resistance.

  • Credit: Image is taken from the Report of the Basic Energy Sciences Workshop on Superconductivity, May 8-11, 2006

    In copper and iron-based superconductors, the spins on adjacent sites have north and south poles that alternate directions. Scientists think that the ordering of these magnetic poles may affect the electrons' interactions.

In 1911, physicist Heike Kamerlingh Onnes aimed to lower mercury’s temperature to as close to absolute zero as possible. He hoped to win a disagreement with Lord Kelvin, who thought metals would stop conducting electricity altogether at extremely low temperatures. Carefully manipulating a set of glass tubes, Kamerlingh Onnes and his team lowered the mercury’s temperature to 3 K (-454 F). Suddenly, the mercury conducted electricity with zero resistance. Kamerlingh Onnes had just discovered superconductivity.

This single finding led to a worldwide investigation that’s spanned a century. While it resolved one scientific debate, it created many more. The Department of Energy’s Office of Science and its predecessors have spent decades supporting scientists investigating the mystery of why superconductivity occurs under a variety of circumstances.

The answer to this question holds major opportunities for scientific and technological development. About six percent of all electricity distributed in the U.S. is lost in transmission and distribution. Because superconductors don’t lose current as they conduct electricity, they could enable ultra-efficient power grids and incredibly fast computer chips. Winding them into coils produces magnetic fields that could be used for highly-efficient generators and high-speed magnetic levitation trains. Unfortunately, technical challenges with both traditional and “high temperature” superconductors restrict their use.

“To the extent that Tesla and Edison introducing the use of electricity revolutionized our society, ambient superconductivity would revolutionize it once again,” said J.C. Séamus Davis, a physicist who works with the Center for Emergent Superconductivity, a DOE Energy Frontier Research Center.

The How and Why of Superconductivity

Kamerlingh Onnes’ discovery set off a flurry of activity. Despite his grand visions, most of what scientists found only reinforced superconductors’ limitations.

One of the first big breakthroughs came nearly half a century after Kamerlingh Onnes’ initial finding. While most researchers thought superconductivity and magnetism couldn’t co-exist, Alexei A. Abrikosov proposed “Type II” superconductors that can tolerate magnetic fields in 1952. Abrikosov continued his research at DOE’s Argonne National Laboratory (ANL) and later won the Nobel Prize in Physics for his contributions.

The next big leap came in 1957, when John Bardeen, Leon Cooper, and John Robert Schrieffer proposed the first theory of why superconductivity occurs. Their theory, made possible by the support of DOE’s predecessor, the Atomic Energy Commission, also won them the Nobel Prize in physics.

Their theory contrasts how some metals work under normal conditions with how they act at extremely low temperatures. Normally, atoms are packed together in metals, forming regular lattices. Similar to the spokes and rods of Tinkertoys, the metals’ positively charged ions are bonded together. In contrast, negatively charged free electrons (electrons not tied to an ion) move independently through the lattice.

But at extremely low temperatures, the relationship between the electrons and the surrounding lattice changes. A common view is that the electrons’ negative charges weakly attract positive ions. Like someone tugging the middle of a rubber band, this weak attraction slightly pulls positive ions out of place in the lattice. Even though the original electron has already passed by, the now displaced positive ions then slightly attract other electrons. At near absolute zero, attraction from the positive ions causes electrons to follow the path of the ones in front of them. Instead of travelling independently, they couple into pairs. These pairs flow easily through metal without resistance, causing superconductivity.

Discovering All-New Superconductors

Unfortunately, all of the superconductors that scientists had found only functioned near absolute zero, the coldest theoretically possible temperature.

But in 1986, Georg Bednorz and K. Alex Müller at IBM discovered copper-based materials that become superconducting at 35 K (-396 F). Other scientists boosted these materials’ superconducting temperature to close to 150 K (-190 F), enabling researchers to use fairly common liquid nitrogen to cool them.

In the last decade, researchers in Japan and Germany discovered two more categories of high-temperature superconductors. Iron-based superconductors exist in similar conditions to copper-based ones, while hydrogen-based ones only exist at pressures more than a million times that of Earth’s atmosphere.

But interactions between the electron pairs and ions in the metal lattice that Bardeen, Cooper, and Schrieffer described couldn’t explain what was happening in copper and iron-based high temperature superconductors.

“We were thrown into a quandary,” said Peter Johnson, a physicist at Brookhaven National Laboratory (BNL) and director of its Center for Emergent Superconductivity. “These new materials challenged all of our existing ideas on where to look for new superconductors.”

In addition to being scientifically intriguing, this conundrum opened up a new realm of potential applications. Unfortunately, industry can only use “high-temperature” superconductors are for highly specialized applications. They are still too complex and expensive to use in everyday situations. However, figuring out what makes them different from traditional ones may be essential to developing superconductors that work at room temperature. Because they wouldn’t require cooling equipment and could be easier to work with, room temperature superconductors could be cheaper and more practical than those available today.

A Shared Characteristic

Several sets of experiments supported by the Office of Science are getting us closer to finding out what, if anything, high-temperature superconductors have in common. Evidence suggests that magnetic interactions between electrons may be essential to why high-temperature superconductivity occurs.

All electrons have a spin, creating two magnetic poles. As a result, electrons can act like tiny refrigerator magnets. Under normal conditions, these poles aren’t oriented in a particular way and don’t interact. However, copper and iron-based superconductors are different. In these materials, the spins on adjacent iron sites have north and south poles that alternate directions – oriented north, south, north, south and so on.

One project supported by the Center for Emergent Superconductivity examined how the ordering of these magnetic poles affected their interactions. Scientists theorized that because magnetic poles were already pointing in opposite directions, it would be easier than usual for electrons to pair up. To test this theory, they correlated both the strength of bonds between electrons (the strength of the electron pairs) and the direction of their magnetism. With this technique, they provided significant experimental evidence of the relationship between superconductivity and magnetic interactions.

Other experiments at a number of DOE’s national laboratories have further reinforced this theory. These observations met scientists’ expectations of what should occur if superconductivity and magnetism are connected.

Researchers at ANL observed an iron-based superconductor go through multiple phases before reaching a superconducting state. As scientists cooled the material, iron atoms went from a square structure to a rectangular one and then back to a square one. Along the way, there was a major change in the electrons’ magnetic poles. While they were originally random, they assumed a specific order right before reaching superconductivity.

At DOE’s Ames Laboratory, researchers found that adding or removing electrons from an iron-based superconducting material changed the direction in which electricity flowed more easily. Researchers at BNL observed that superconductivity and magnetism not only co-exist, but actually fluctuate together in a regular pattern.

Unfortunately, electron interactions’ complex nature makes it difficult to pinpoint exactly what role they play in superconductivity.

Research at BNL found that as scientists cooled an iron-based material, the electron spins’ directions and their relationship with each other changed rapidly. The electrons swapped partners right before the material became superconducting. Similarly, research at ANL has showed that electrons in iron-based superconductors produce “waves” of magnetism. Because some of the magnetic waves cancel each other out, only half of the atoms demonstrate magnetism at any one time.

These findings are providing new insight into why superconductors behave the way they do. Research has answered many questions about them, only to bring up new ones. While laboratories have come a long way from Kamerlingh Onnes’ hand-blown equipment, scientists continue to debate many aspects of these unique materials.