X
X
X

Machine Learning Dramatically Streamlines Search for More Efficient Chemical Reactions

A catalytic reaction may follow thousands of possible paths, and it can take years to identify which one it actually takes so scientists can tweak it and make it more efficient. Now researchers at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University have taken a big step toward cutting through this thicket of possibilities.

Freezing Lithium Batteries May Make Them Safer and Bendable

Columbia Engineering Professor Yuan Yang has developed a new method that could lead to lithium batteries that are safer, have longer battery life, and are bendable, providing new possibilities such as flexible smartphones. His new technique uses ice-templating to control the structure of the solid electrolyte for lithium batteries that are used in portable electronics, electric vehicles, and grid-level energy storage. The study is published online April 24 in Nano Letters.

New Study Reveals the Mystery Behind the Formation of Hollowed Nanoparticles During Metal Oxidation

In a newly published <i>Science</i> paper, Argonne and Temple University researchers reveal new knowledge about the behavior of metal nanoparticles when they undergo oxidation, by integrating X-ray imaging and computer modeling and simulation. This knowledge adds to our understanding of fundamental processes like oxidation and corrosion.

Rare Supernova Discovery Ushers in New Era for Cosmology

With help from a supernova-hunting pipeline based at NERSC, astronomers captured multiple images of a gravitationally lensed Type 1a supernova. This is currently the only one, but if astronomers can find more they may be able to measure Universal expansion within four percent accuracy. Luckily, Berkeley Lab researchers do have a method for finding more.

Making Batteries From Waste Glass Bottles

Researchers at the University of California, Riverside's Bourns College of Engineering have used waste glass bottles and a low-cost chemical process to create nanosilicon anodes for high-performance lithium-ion batteries. The batteries will extend the range of electric vehicles and plug-in hybrid electric vehicles, and provide more power with fewer charges to personal electronics like cell phones and laptops.

Changing the Game

High performance computing researcher Shuaiwen Leon Song asked if hardware called 3D stacked memory could do something it was never designed to do--help render 3D graphics.

A Scientific Advance for Cool Clothing: Temperature-Wise, That Is

Stanford University researchers, with the aid of the Comet supercomputer at the San Diego Supercomputer at UC San Diego, have engineered a low-cost plastic material that could become the basis for clothing that cools the wearer, reducing the need for energy-consuming air conditioning.

Adjusting Solar Panel Angles a Few Times a Year Makes Them More Efficient

With Earth Day approaching, new research from Binghamton University-State of New York could help U.S. residents save more energy, regardless of location, if they adjust the angles of solar panels four to five times a year.

A Real CAM-Do Attitude

A multi-institutional team used resources at the Oak Ridge Leadership Computing Facility to catalog how desert plants photosynthetic processes vary. The study could help scientists engineer drought-resistant crops for food and fuel.

Predictive Power

The Consortium for Advanced Simulation of Light Water Reactors carried out the largest time-dependent simulation of a nuclear reactor ever to support Tennessee Valley Authority and Westinghouse Electric Company during the startup of Watts Bar Unit 2, the first new US nuclear reactor in 20 years. The simulation was carried out primarily on OLCF resources.


3 Small Energy Firms to Collaborate with PNNL

Pacific Northwest National Laboratory is collaborating with three small businesses to address technical challenges concerning hydrogen for fuel cell cars, bio-coal and nanomaterial manufacturing.

ORNL to Collaborate with Five Small Businesses to Advance Energy Tech

Five small companies have been selected to partner with the Department of Energy's Oak Ridge National Laboratory to move technologies in commercial refrigeration systems, water power generation, bioenergy and battery manufacturing closer to the marketplace.

U.S. Department of Energy's INCITE Program Seeks Advanced Computational Research Proposals for 2018

The Department of Energy's INCITE program will be accepting proposals for high-impact, computationally intensive research campaigns in a broad array of science, engineering, and computer science domains.

New Berkeley Lab Project Turns Waste Heat to Electricity

A new Berkeley Lab project seeks to efficiently capture waste heat and convert it to electricity, potentially saving California up to $385 million per year. With a $2-million grant from the California Energy Commission, Berkeley Lab scientists will work with Alphabet Energy to create a cost-effective thermoelectric waste heat recovery system.

New SLAC Theory Institute Aims to Speed Research on Exotic Materials at Light Sources

A new institute at the Department of Energy's SLAC National Accelerator Laboratory is using the power of theory to search for new types of materials that could revolutionize society - by making it possible, for instance, to transmit electricity over power lines with no loss.

Lenvio Inc. Exclusively Licenses ORNL Malware Behavior Detection Technology

Virginia-based Lenvio Inc. has exclusively licensed a cyber security technology from the Department of Energy's Oak Ridge National Laboratory that can quickly detect malicious behavior in software not previously identified as a threat.

Argonne Scientist and Nobel Laureate Alexei Abrikosov Dies at 88

Alexei Abrikosov, an acclaimed physicist at the U.S. Department of Energy's Argonne National Laboratory who received the 2003 Nobel Prize in Physics for his work on superconducting materials, died Wednesday, March 29. He was 88.

Jefferson Lab Accomplishes Critical Milestones Toward Completion of 12 GeV Upgrade

The Continuous Electron Beam Accelerator Facility (CEBAF) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility has achieved two major commissioning milestones and is now entering the final stretch of work to conclude its first major upgrade. Recently, the CEBAF accelerator delivered electron beams into two of its experimental halls, Halls B and C, at energies not possible before the upgrade for commissioning of the experimental equipment currently in each hall. Data were recorded in each hall, which were then confirmed to be of sufficient quality to allow for particle identification, a primary indicator of good detector operation.

Valerie Taylor Named Argonne National Laboratory's Mathematics and Computer Science Division Director

Computer scientist Valerie Taylor has been appointed as the next director of the Mathematics and Computer Science division at Argonne, effective July 3, 2017.

Three SLAC Employees Awarded Lab's Highest Honor

At a March 7 ceremony, three employees of the Department of Energy's SLAC National Accelerator Laboratory were awarded the lab's highest honor ­- the SLAC Director's Award.


The Roadmap to Quark Soup

Scientists discover new signposts in the quest to determine how matter from the early universe turned into the world we know today.

Neutrons Play the Lead to Protons in Dance Around "Double-Magic" Nucleus

Electric and magnetic properties of a radioactive atom provide unique insight into the nature of proton and neutron motion.

Ultrafast Imaging Reveals the Electron's New Clothes

Scientists use high-speed electrons to visualize "dress-like" distortions in the atomic lattice. This work reveals the vital role of electron-lattice interactions in manganites. This material could be used in data-storage devices with increased data density and reduced power requirements.

One Small Change Makes Solar Cells More Efficient

For years, scientists have explored using tiny drops of designer materials, called quantum dots, to make better solar cells. Adding small amounts of manganese decreases the ability of quantum dots to absorb light but increases the current produced by an average of 300%.

Electronic "Cyclones" at the Nanoscale

Through highly controlled synthesis, scientists controlled competing atomic forces to let spiral electronic structures form. These polar vortices can serve as a precursor to new phenomena in materials. The materials could be vital for ultra-low energy electronic devices.

In a Flash! A New Way for Making Ceramics

A new process controllably but instantly consolidates ceramic parts, potentially important for manufacturing.

Deciphering Material Properties at the Single-Atom Level

Scientists determine the precise location and identity of all 23,000 atoms in a nanoparticle.

Smallest Transistor Ever

It has long been thought that building nanometer-sized transistors was impossible. Simply put, the physics and atomic structural imperfections couldn't be overcome. However, scientists built fully functional, nanometer-sized transistors.

Creation of Artificial Atoms

For the first time, scientists created a tunable artificial atom in graphene. The results from this research demonstrate a viable, controllable, and reversible technique to confine electrons in graphene.

Developing Tools to Understand Lithium-Ion Battery Instabilities

Scientists develop tools to understand Li-ion battery instabilities, enabling the study of electrodes and solid-electrolyte interphase formation.


Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park




Brookhaven Lab-Led Research Aims to Develop Protections Against Chemical Warfare Agents

Article ID: 672945

Released: 2017-04-11 13:05:26

Source Newsroom: Brookhaven National Laboratory

  • Credit: Brookhaven National Lab photo

    Anatoly Frenkel

  • Members of the project team are, from left, Anatoly Frenkel (Stony Brook University, BNL), John Morris (Virginia Tech), Gregory Peterson (ECBC), Robert Botto (DTRA), Jamal Musaev (Emory University), Robert Chapleski (Virginia Tech), Diego Troya (Virginia Tech), Chris Karwacki (ECBC), Conor Sharp (Virginia Tech), Craig Hill (Emory University), Sanjaya Senanayake (BNL), Wesley Gordon (ECBC), Mark Mitchell (Kennesaw State University), and Weiwei Guo (Emory University).

Chemical warfare agents that could be deployed against both soldiers and civilians have been a grave concern since World War I, when they were first used. Research on methods to defeat these weapons has been a focus of scientists since that time. Now, scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory are participating in a collaborative effort to study how the use of zirconium (Zr)-based metal organic frameworks (MOFs) and niobium (Nb)-based polyoxometalates (POMs) may be effectively used in gas masks to capture and decompose dangerous chemical agents like Sarin, notably used in a subway terrorist attack in Japan in 1995.

Results of the research were recently published in two separate scientific papers published in the December 30, 2016 issue of the Journal of the American Chemical Society and in the April 10, 2017 issue of the journal Scientific Reports.

Both investigations were carried out by collaborative teams led by Anatoly Frenkel, a joint appointee in Brookhaven Lab’s Chemistry Division and the Materials Science and Chemical Engineering Department at Stony Brook University. The teams used Brookhaven Lab’s National Synchrotron Light Source (NSLS) and its successor, NSLS-II, the Stanford Synchrotron Radiation Lightsource (SSRL), and Argonne National Laboratory’s Advanced Photon Source (APS)—all DOE Office of Science User Facilities—to conduct probes on how the MOFs and POMs interact with dimethyl methyl-phosphonate (DMMP), a low-toxicity simulant of Sarin.

“As shown in previous studies—notably by the groups of J. Hupp and O. Farha in Nature Materials (2015) 14, 512—MOFs can be effective for the degradation of nerve agents and their simulants,” said Frenkel. “Our team developed an in situ, multimodal approach, using synchrotron diffraction and absorption facilities, that allowed us to investigate the uptake of the simulant into the MOF pores and the simulant decomposition by the MOF. In the case of POMs, we uncovered the mechanism of DMMP decomposition and the specific roles of niobium-oxygen bonds for this process.”

The MOF is somewhat like a sponge that not only uptakes DMMP but also decomposes it and keeps it from reentering the airstream. In the case of POMs, the polyoxoniobate also breaks down the DMMP, but the products of decomposition remain strongly bound to the POMs. Frenkel says this research highlights the need for new approaches that address product inhibition, and may lead to innovations in the new design of protective materials for gas masks.

“Three years ago, a group of scientists got together and decided to investigate the mechanisms of filtration at a new level of detail — at the level of single atoms and molecules — and this is where Brookhaven’s facilities were uniquely useful,” Frenkel said. “We have the ability to study the geometric structural environment of atoms and molecules at a broad range of scales and times. And we can do it under conditions similar to those in which these filtration materials operate.”

"Such a complex problem requires a highly interdisciplinary approach to the science," said John Morris, a professor of chemistry at Virginia Tech, surface scientist, and lead PI on the grant that supports this work.

This interdisciplinary approach is evident in both papers. MOFs are a novel class of materials with a very porous structure and a large surface area that enables them to act as sponges, taking in chemicals or any ambient molecules from the airstream. Prior research showed that zirconium oxides had enhanced adsorption qualities and the ability to bind chemicals, so it was chosen as the main element. Four different MOFs were tested, each with different structural details that would allow researchers to better understand which might make a good filtration material. Differences included pore size and number of connections.

Since Brookhaven Lab is not designed for handling real chemical warfare agents, the researchers used DMMP, a simulant that imitates Sarin’s chemical properties but without its biological toxicity, allowing it to be used safely in laboratory studies on the action of filtration materials.

 Anna Plonka, a member of Frenkel’s group and the first author in the first paper, used the XPD beamline at NSLS-II and 17-BM beamline at APS to conduct x-ray diffraction measurements. Those measurements provided evidence that DMMP entered the MOF, but the method did not have sufficient sensitivity to investigate the decomposition of DMMP.

“Using diffraction beamlines at APS and NSLS-II, we were able to answer two questions: First, did DMMP molecules enter MOFs or not?” Frenkel said. “By comparing the diffraction data before and after the MOFs were exposed to DMMP, we could see that the pore size increased after the exposure, but it was not direct evidence that DMMP entered the pores. So we asked the second question: Can we capture the image of DMMP molecules inside the pores—in other words, catching it red-handed?”

For that, the scientists used a technique called a Difference Density Map, which showed the crystallographic structure of the MOF with evidence of foreign objects inside.

“What we see using this method is, so to speak, ‘shadows’ of DMMP, signaling that it is inside the MOFs,” said Frenkel. “Furthermore, we noticed that the DMMP shadows were present near zirconium clusters. That fact, along with our knowledge that zirconium species may be catalytically active, pointed towards a possibility that the DMMP decomposition occurred as a result of interaction with Zr clusters.”

To verify this hypothesis, the scientists analyzed the local structure around zirconium atoms during the exposure of the MOFs to DMMP. For that they used EXAFS, a spectroscopy technique that is sensitive to very small scales of distance around each atomic species that absorb x-rays. This work, performed at SSRL, demonstrated that the Zr environment was perturbed when DMMP was added to the reaction volume, thus confirming the hypothesis. Overall, the research shows the important role of both the MOF porosity and the Zr centers in adsorbing and binding the DMMP, and provides guidance for the design of improved filtration materials based on MOF structures.

The second article, describing POMs, follows a similar approach – a combination of in situ EXAFS, in situ Raman spectroscopy, and calculations by Density Functional Theory. The EXAFS and Raman experiments were performed by Qi Wang, a scientist in Frenkel’s group and the first author in the paper.

Both projects involved collaboration with synthetic chemists in the Craig Hill group at Emory University, and Wesley Gordon and Alex Balboa, scientists at the U.S. Army’s Edgewood Chemical and Biological Center in Aberdeen, Maryland. Brookhaven chemist Sanjaya Senanayake and Nebojsa Marinkovic, a staff scientist at the Synchrotron Catalysis Consortium, also contributed to the in situ studies. In addition, collaboration with computational chemists at Virginia Tech, led by Diego Troya, provided insights on the molecular interactions with the MOF and POM materials.

“Obtaining atomic-level insight of any catalytic process is extremely challenging because changes occur very quickly and structural transformations during the reaction are very subtle,” said Troya. “The accuracy of current computational-chemistry approaches to catalysis is reasonable, but requires use of models that need careful calibration. The measurements performed at Brookhaven provided a unique set of experimental data with which the validity of the computational models for nerve-agent decomposition on POMs could be tested. From the synergy between the simulations and the measurements, the atom-level hydrolysis mechanism of toxic nerve agents with POMs was revealed for the first time. The mechanism describes not only the transformation of the nerve agent during reaction, but also structural and electronic changes to the few atoms of the catalyst that directly participate in the reaction.”

The interdisciplinary team also includes experts in infrared spectroscopy in the Mark Mitchell group at Kennesaw State University, and computational chemists at Emory University, led by Djamaladdin (Jamal) Musaev. They provided important insights on the molecular interactions with the MOF and POM materials. Together, the team is advancing the understanding of the use of MOFs and POMs in detoxification of gases.

The research was funded by the Defense Threat Reduction Agency. Operations at NSLS-II, APS, and SSRL are supported by DOE’s Office of Science (BES).