Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-04-17 08:00:51
  • Article ID: 673039

How X-Rays Pushed Topological Matter R&D Over the Top

Work at Berkeley Lab's Advanced Light Source helped to spawn a revolution in topological materials research

  • Credit: Yulin Chen, Z.-X. Shen/Stanford University

    A 3-D image of the surface band structure of bismuth telluride.

  • Credit: Roy Kaltschmidt/Berkeley Lab

    Beamline 10.0.1 at Berkeley Lab’s Advanced Light Source is optimized for studies of topological properties in materials.

  • Credit: David Hsieh, Yuqi Xia, Andrew Wray/Princeton University

    Band structure of bismuth selenide, a topological insulator. The red areas represent surface states and the vertical space between the yellow areas is the bulk band gap. At lower right, a 3-D schematic of the cone-shaped surface band structure. The spin states (yellow arrows) indicate that electrons on the surface won’t backscatter from disorder and impurities in the material.

  • Credit: Roy Kaltschmidt/Berkeley Lab

    Alexei Fedorov, a staff scientist at Berkeley Lab's Advanced Light Source, is pictured here at Beamline 12.0.1, which is specialized for topological matter research.

While using X-rays generated by the Advanced Light Source (ALS), a synchrotron facility at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), to study a bismuth-containing thermoelectric material that can convert heat into electricity, physicist M. Zahid Hasan of Princeton University saw that something was interfering with the anticipated view of electrons’ behavior inside the material.

Knowing how electrons move within this material was sought as a key to decipher how it worked, so this interference -- which he and his team observed more than a decade ago during an experiment employing an X-ray-based technique dubbed ARPES (angle-resolved photoemission spectroscopy) -- was a problem ... at first.

“Since 2004, I was involved with this research looking for a better understanding of bismuth-based thermoelectric materials, among other things,” said Hasan.

Around 2007, after completing more X-ray experiments at the ALS and other synchrotrons, and after gaining some understanding of the theory related to his team’s observations, it would become clear to Hasan that this obstruction was actually a discovery: One that would spark a revolution in materials research that continues today, and that could eventually lead to new generations of electronics and quantum technologies.

Topological matter research is now a flourishing field of research at the ALS, with several staff members devoted to supporting X-ray techniques that largely focus on the properties of topological matter.

“Since 2005, something on the surface was annoying me quite a bit,” said Hasan, a Princeton physics professor who in late 2016 became a visiting faculty member at Berkeley Lab’s Materials Sciences Division and a Visiting Miller Professor at UC Berkeley. “I could not get rid of the surface states.”

Back at Princeton, Hasan struck up a conversation with a fellow physics professor, Duncan Haldane, and he also spoke with Charles Kane, a physics professor at the neighboring University of Pennsylvania, for their collective theoretical insight about the surface effects he was seeing in some bismuth-containing materials. “At that point I was not aware of the theoretical predictions.”

They discussed theoretical work, some of it dating back several decades, that had explored bizarre and resilient “topological” states in which electrons could move about the surface of a thin material with next to no resistance -- like in a traditional superconductor but with a different mechanism.

The theoretical work provided little clue in how to find the effects in the materials exhibiting this phenomenon, though. So Hasan set out on a path that crossed into the fields of quantum theory, particle physics, and complex mathematics.

“I had to translate all of the abstract math into these experiments,” he said. “It was like translating from a foreign language.”

Flash forward to October 2016, and this time Haldane was describing his early theoretical work during a Nobel Prize press conference. Haldane shared the 2016 Nobel Prize in Physics with David Thouless of the University of Washington (a former postdoctoral researcher at Berkeley Lab) and J. Michael Kosterlitz of Brown University for their work in “theoretical discoveries of topological phase transitions and topological phases of matter.” 

Haldane had said at the time of the Nobel Prize announcement, “I put in the first paper that this is unlikely to be anything anyone could make.” His work, he said, was a “sleeper” that “sat around as an interesting toy model for a very long time -- no one quite knew what to do with it.”

What helped bring that “toy model” to life were later theories by Kane and collaborators, and innovative ARPES studies at the ALS and other synchrotrons that directly probed exotic topological states in some materials.

Synchrotrons like the ALS have dozens of beamlines that produce focused X-rays and other types of light beams for a variety of experiments that explore the properties of exotic materials and other samples at tiny scales, and ARPES provides a window into materials’ electron properties.

The Nobel Committee, in its supporting materials for the prize, had cited early experiments by Hasan’s team at the ALS on materials exhibiting topological insulator phases. A topological insulator acts like an electrical conductor on the surface and an insulator (with no electrical flow) inside.

Zahid Hussain, division deputy at the ALS said, “Hasan is an exceptional scientist with a deep understanding of both theory and experiment. He is the reason this became experimentally visible. One experiment did that.”

Hasan’s work provided an early demonstration of a 3-D topological insulator, for example.

In these materials, the electron motion is relatively robust, and is immune to many types of impurities and deformities. Researchers have found examples of topological properties in materials even at room temperature.

This is a critical advantage over so-called high-temperature superconductors, which must be chilled to extreme temperatures in order to achieve a nearly resistance-free flow of electrons.

With topological materials, the electrons exhibit unique patterns in a property known as electron spin that is analogous to a compass needle pointing up or down, and this property can change based on the electron’s path and position in a material.

One potential future application for the spin properties of electrons in topological materials is spintronics, an emerging field that seeks to control the spin on demand to transmit and store information, much like the zeroes and ones in traditional computer memory.

Spin could also be harnessed as the information carriers in quantum computers, which could conceivably carry out exponentially more calculations of a certain type in a shorter time than conventional supercomputers.

Jonathan Denlinger, a staff scientist in the Scientific Support Group at the ALS, said the breakthrough studies on materials with topological behavior led to a rapid shift in focus on materials’ surface properties. Researchers had historically been more interested in electrons within the “bulk,” or inside of materials. 

Hasan’s group used three ALS beamlines -- MERLIN, 12.0.1, and 10.0.1 -- in pioneering ARPES studies of topological matter. Hasan was a co-leader on the proposal that led to the construction of MERLIN in the early 2000s.

Denlinger, and fellow ALS staff scientists Alexei Fedorov and Sung-Kwan Mo, work at these ALS beamlines, which specialize in ARPES and a related variant called spin-resolved photoelectron spectroscopy. The techniques can provide detailed information about how electrons travel in materials and also about the electrons’ spin orientation.

ARPES beamlines at the ALS remain in high demand for topological matter research. Fedorov said, “These days, almost every proposal submitted to our beamline in one way or another deals with topological matter.”

The quest for discoveries of new topological matter at the ALS will also be boosted by a beamline known as MAESTRO that started up last year. A new beamline called COSMIC (coherent scattering and microscopy), now in commissioning, will help in visualizing exotic ordered structures formed in some topological materials.

ALS-U, a planned upgrade of the ALS, should improve and enhance topological matter studies using the ALS,” Mo said. “It will allow us to focus down to a very small spot,” which could reveal more detail in the electron behavior of topological matter.

Improved X-ray performance could help identify some topological materials that were previously overlooked, and to better distinguish and classify their properties, Hasan said.

Hasan’s early work in topological matter, including topological insulators, led him to the detection of a previously theorized massless particle known as the Weyl fermion in topological semimetals, and he is now devising a related experiment that he hopes will mimic the period of the early universe in which particles began to take on mass.

Denlinger, Fedorov, and Mo are gearing up for more studies of topological matter, and are reaching out to possible collaborators across Berkeley Lab and the global scientific community.

Nanoscale materials show a lot of promise for topological materials applications, and thermoelectrics -- those same materials that can transfer heat to electricity and vice versa, and that led to the first realization of topological matter in X-ray experiments -- should see performance gains in the short term thanks to the feverish pace of R&D in the field, Fedorov noted.

Hasan, too, said he is excited about progress in the field. “We are in the middle of a topological revolution in physics, for sure,” he said.

The Advanced Light Source (ALS) is a DOE Office of Science User Facility. Operation of ALS and this work is supported by the DOE Office of Science.

# # #

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

X
X
X
  • Filters

  • × Clear Filters

Rutgers Scientists Discover 'Legos of Life'

Rutgers scientists have found the "Legos of life" - four core chemical structures that can be stacked together to build the myriad proteins inside every organism - after smashing and dissecting nearly 10,000 proteins to understand their component parts. The four building blocks make energy available for humans and all other living organisms, according to a study published online today in the Proceedings of the National Academy of Sciences.

Small Hydroelectric Dams Increase Globally with Little Research, Regulations

University of Washington researchers have published the first major assessment of small hydropower dams around the world -- including their potential for growth -- and highlight the incredibly variability in how dams of varying sizes are categorized, regulated and studied.

Researchers Reveal How Microbes Cope in Phosphorus-Deficient Tropical Soil

A team led by the Department of Energy's Oak Ridge National Laboratory has uncovered how certain soil microbes cope in a phosphorus-poor environment to survive in a tropical ecosystem. Their novel approach could be applied in other ecosystems to study various nutrient limitations and inform agriculture and terrestrial biosphere modeling.

Scientists Discover Material Ideal for Smart Photovoltaic Windows

Researchers at Berkeley Lab discovered that a form of perovskite, one of the hottest materials in solar research due to its high conversion efficiency, works surprisingly well as a stable and photoactive semiconductor material that can be reversibly switched between a transparent state and a non-transparent state, without degrading its electronic properties.

Biofuels Feedstock Study Supports Billion-Ton Estimate

Can farmers produce at least 1 billion tons of biomass per year that can be used as biofuels feedstock? The answer is yes.

On the Rebound

New research from the U.S. Department of Energy's Argonne National Laboratory and Stanford University has found that palladium nanoparticles can repair atomic dislocations in their crystal structure, potentially leading to other advances in material science.

Coupling Experiments to Theory to Build a Better Battery

A Berkeley Lab-led team of researchers has reported that a new lithium-sulfur battery component allows a doubling in capacity compared to a conventional lithium-sulfur battery, even after more than 100 charge cycles.

DRIFTing to Fast, Precise Data

Non-destructive technique identifies key variations in Alaskan soils, quickly providing insights into carbon levels.

A Shortcut to Modeling Sickle Cell Disease

Using Oak Ridge National Laboratory's Titan supercomputer, a team led by Brown University's George Karniadakis devised a multiscale model of sickle cell disease that captures what happens inside a red blood cell affected by the disease.

Remotely Predicting Leaf Age in Tropical Forests

New approach offers data across species, sites, and canopies, providing insights into carbon uptake by forests.


  • Filters

  • × Clear Filters

Theoretical Physicist Elena Belova Named to Editorial Board of Physics of Plasmas

Theoretical physicist Elena Belova named to editorial board of Physics of Plasmas

Superconducting X-Ray Laser Takes Shape in Silicon Valley

An area known for high-tech gadgets and innovation will soon be home to an advanced superconducting X-ray laser that stretches 3 miles in length, built by a collaboration of national laboratories. On January 19, the first section of the machine's new accelerator arrived by truck at SLAC National Accelerator Laboratory in Menlo Park after a cross-country journey that began in Batavia, Illinois, at Fermi National Accelerator Laboratory.

Kelsey Stoerzinger Earns Young Investigator Lectureship

Kelsey Stoerzinger, Pauling Fellow at Pacific Northwest National Laboratory, is one of the 2018 Caltech Young Investigator Lecturers in Engineering and Applied Physics.

North Dakota State University Joins Two National Distributed Computing Groups

The NDSU Center for Computationally Assisted Science and Technology (CCAST) joins OSG (Open Science Grid) and XSEDE (Extreme Science and Engineering Discovery Environment).

DOE Announces Funding for New HPC4Manufacturing Industry Projects

The Department of Energy's Advanced Manufacturing Office (AMO) today announced the funding of $1.87 million for seven new industry projects under an ongoing initiative designed to utilize DOE's high-performance computing (HPC) resources and expertise to advance U.S. manufacturing and clean energy technologies.

DOE Announces First Awardees for New HPC4Materials for Severe Environments Program

The Department of Energy's Office of Fossil Energy (FE) today announced the funding of $450,000 for the first two private-public partnerships under a brand-new initiative aimed at discovering, designing and scaling up production of novel materials for severe environments.

Two Argonne Scientists Recognized for a Decade of Breakthroughs

Two scientists with the U.S. Department of Energy's (DOE) Argonne National Laboratory have been named to the Web of Science's Highly Cited List of 2017, ranking in the top 1 percent of their peers by citations and subject area. Materials Scientist Khalil Amine and Energy and Environmental Policy Scientist David Streets say they are thrilled to see their work -- and the laboratory -- recognized in such a way.

Argonne Welcomes Department of Energy Secretary Perry

U.S. Department of Energy Secretary Rick Perry visited Argonne National Laboratory yesterday, getting a first-hand view of the multifaceted and interdisciplinary research program laboratory of the Department.

Argonne names John Quintana Deputy Laboratory Director for Operations and COO

John Quintana has been named Deputy Laboratory Director for Operations and Chief Operations Officer (COO) of the U.S. Department of Energy's (DOE) Argonne National Laboratory.

Developing Next-Generation Sensing Technologies

Recently, the Advanced Research Projects Agency-Energy (ARPA-E) announced $20 million in funding for 15 projects that will develop a new class of sensor systems to enable significant energy savings via reduced demand for heating and cooling in residential and commercial buildings.


  • Filters

  • × Clear Filters

Exploring Past, Present, and Future Water Availability Regionally, Globally

New open-source software simulates river and runoff resources.

Arctic Photosynthetic Capacity and Carbon Dioxide Assimilation Underestimated by Terrestrial Biosphere Models

New measurements offer data vital to projecting plant response to environmental changes.

DRIFTing to Fast, Precise Data

Non-destructive technique identifies key variations in Alaskan soils, quickly providing insights into carbon levels.

Superconducting Tokamaks Are Standing Tall

Plasma physicists significantly improve the vertical stability of a Korean fusion device.

Graphene Flexes Its Muscle

Crumpling reduces rigidity in an otherwise stiff material, making it less prone to catastrophic failure.

Remotely Predicting Leaf Age in Tropical Forests

New approach offers data across species, sites, and canopies, providing insights into carbon uptake by forests.

What's the Noise Eating Quantum Bits?

The magnetic noise caused by adsorbed oxygen molecules is "eating at" the phase stability of quantum bits, mitigating the noise is vital for future quantum computers.

Rewritable Wires Could Mean No More Obsolete Circuitry

An electric field switches the conductivity on and off in atomic-scale channels, which could allow for upgrades at will.

Filtering Water Better than Nature

Water passes through human-made straws faster than the "gold standard" protein, allowing us to filter seawater.

Machine Learning Provides a Bridge to the Texture of the Quantum World

Machine learning and neural networks are the foundation of artificial intelligence and image recognition, but now they offer a bridge to see and recognize exotic insulating phases in quantum materials.


Spotlight

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)





Showing results

0-4 Of 2215