Doe Science news source

The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-04-17 08:00:51
  • Article ID: 673039

How X-Rays Pushed Topological Matter R&D Over the Top

Work at Berkeley Lab's Advanced Light Source helped to spawn a revolution in topological materials research

  • Credit: Yulin Chen, Z.-X. Shen/Stanford University

    A 3-D image of the surface band structure of bismuth telluride.

  • Credit: Roy Kaltschmidt/Berkeley Lab

    Beamline 10.0.1 at Berkeley Lab’s Advanced Light Source is optimized for studies of topological properties in materials.

  • Credit: David Hsieh, Yuqi Xia, Andrew Wray/Princeton University

    Band structure of bismuth selenide, a topological insulator. The red areas represent surface states and the vertical space between the yellow areas is the bulk band gap. At lower right, a 3-D schematic of the cone-shaped surface band structure. The spin states (yellow arrows) indicate that electrons on the surface won’t backscatter from disorder and impurities in the material.

  • Credit: Roy Kaltschmidt/Berkeley Lab

    Alexei Fedorov, a staff scientist at Berkeley Lab's Advanced Light Source, is pictured here at Beamline 12.0.1, which is specialized for topological matter research.

While using X-rays generated by the Advanced Light Source (ALS), a synchrotron facility at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), to study a bismuth-containing thermoelectric material that can convert heat into electricity, physicist M. Zahid Hasan of Princeton University saw that something was interfering with the anticipated view of electrons’ behavior inside the material.

Knowing how electrons move within this material was sought as a key to decipher how it worked, so this interference -- which he and his team observed more than a decade ago during an experiment employing an X-ray-based technique dubbed ARPES (angle-resolved photoemission spectroscopy) -- was a problem ... at first.

“Since 2004, I was involved with this research looking for a better understanding of bismuth-based thermoelectric materials, among other things,” said Hasan.

Around 2007, after completing more X-ray experiments at the ALS and other synchrotrons, and after gaining some understanding of the theory related to his team’s observations, it would become clear to Hasan that this obstruction was actually a discovery: One that would spark a revolution in materials research that continues today, and that could eventually lead to new generations of electronics and quantum technologies.

Topological matter research is now a flourishing field of research at the ALS, with several staff members devoted to supporting X-ray techniques that largely focus on the properties of topological matter.

“Since 2005, something on the surface was annoying me quite a bit,” said Hasan, a Princeton physics professor who in late 2016 became a visiting faculty member at Berkeley Lab’s Materials Sciences Division and a Visiting Miller Professor at UC Berkeley. “I could not get rid of the surface states.”

Back at Princeton, Hasan struck up a conversation with a fellow physics professor, Duncan Haldane, and he also spoke with Charles Kane, a physics professor at the neighboring University of Pennsylvania, for their collective theoretical insight about the surface effects he was seeing in some bismuth-containing materials. “At that point I was not aware of the theoretical predictions.”

They discussed theoretical work, some of it dating back several decades, that had explored bizarre and resilient “topological” states in which electrons could move about the surface of a thin material with next to no resistance -- like in a traditional superconductor but with a different mechanism.

The theoretical work provided little clue in how to find the effects in the materials exhibiting this phenomenon, though. So Hasan set out on a path that crossed into the fields of quantum theory, particle physics, and complex mathematics.

“I had to translate all of the abstract math into these experiments,” he said. “It was like translating from a foreign language.”

Flash forward to October 2016, and this time Haldane was describing his early theoretical work during a Nobel Prize press conference. Haldane shared the 2016 Nobel Prize in Physics with David Thouless of the University of Washington (a former postdoctoral researcher at Berkeley Lab) and J. Michael Kosterlitz of Brown University for their work in “theoretical discoveries of topological phase transitions and topological phases of matter.” 

Haldane had said at the time of the Nobel Prize announcement, “I put in the first paper that this is unlikely to be anything anyone could make.” His work, he said, was a “sleeper” that “sat around as an interesting toy model for a very long time -- no one quite knew what to do with it.”

What helped bring that “toy model” to life were later theories by Kane and collaborators, and innovative ARPES studies at the ALS and other synchrotrons that directly probed exotic topological states in some materials.

Synchrotrons like the ALS have dozens of beamlines that produce focused X-rays and other types of light beams for a variety of experiments that explore the properties of exotic materials and other samples at tiny scales, and ARPES provides a window into materials’ electron properties.

The Nobel Committee, in its supporting materials for the prize, had cited early experiments by Hasan’s team at the ALS on materials exhibiting topological insulator phases. A topological insulator acts like an electrical conductor on the surface and an insulator (with no electrical flow) inside.

Zahid Hussain, division deputy at the ALS said, “Hasan is an exceptional scientist with a deep understanding of both theory and experiment. He is the reason this became experimentally visible. One experiment did that.”

Hasan’s work provided an early demonstration of a 3-D topological insulator, for example.

In these materials, the electron motion is relatively robust, and is immune to many types of impurities and deformities. Researchers have found examples of topological properties in materials even at room temperature.

This is a critical advantage over so-called high-temperature superconductors, which must be chilled to extreme temperatures in order to achieve a nearly resistance-free flow of electrons.

With topological materials, the electrons exhibit unique patterns in a property known as electron spin that is analogous to a compass needle pointing up or down, and this property can change based on the electron’s path and position in a material.

One potential future application for the spin properties of electrons in topological materials is spintronics, an emerging field that seeks to control the spin on demand to transmit and store information, much like the zeroes and ones in traditional computer memory.

Spin could also be harnessed as the information carriers in quantum computers, which could conceivably carry out exponentially more calculations of a certain type in a shorter time than conventional supercomputers.

Jonathan Denlinger, a staff scientist in the Scientific Support Group at the ALS, said the breakthrough studies on materials with topological behavior led to a rapid shift in focus on materials’ surface properties. Researchers had historically been more interested in electrons within the “bulk,” or inside of materials. 

Hasan’s group used three ALS beamlines -- MERLIN, 12.0.1, and 10.0.1 -- in pioneering ARPES studies of topological matter. Hasan was a co-leader on the proposal that led to the construction of MERLIN in the early 2000s.

Denlinger, and fellow ALS staff scientists Alexei Fedorov and Sung-Kwan Mo, work at these ALS beamlines, which specialize in ARPES and a related variant called spin-resolved photoelectron spectroscopy. The techniques can provide detailed information about how electrons travel in materials and also about the electrons’ spin orientation.

ARPES beamlines at the ALS remain in high demand for topological matter research. Fedorov said, “These days, almost every proposal submitted to our beamline in one way or another deals with topological matter.”

The quest for discoveries of new topological matter at the ALS will also be boosted by a beamline known as MAESTRO that started up last year. A new beamline called COSMIC (coherent scattering and microscopy), now in commissioning, will help in visualizing exotic ordered structures formed in some topological materials.

ALS-U, a planned upgrade of the ALS, should improve and enhance topological matter studies using the ALS,” Mo said. “It will allow us to focus down to a very small spot,” which could reveal more detail in the electron behavior of topological matter.

Improved X-ray performance could help identify some topological materials that were previously overlooked, and to better distinguish and classify their properties, Hasan said.

Hasan’s early work in topological matter, including topological insulators, led him to the detection of a previously theorized massless particle known as the Weyl fermion in topological semimetals, and he is now devising a related experiment that he hopes will mimic the period of the early universe in which particles began to take on mass.

Denlinger, Fedorov, and Mo are gearing up for more studies of topological matter, and are reaching out to possible collaborators across Berkeley Lab and the global scientific community.

Nanoscale materials show a lot of promise for topological materials applications, and thermoelectrics -- those same materials that can transfer heat to electricity and vice versa, and that led to the first realization of topological matter in X-ray experiments -- should see performance gains in the short term thanks to the feverish pace of R&D in the field, Fedorov noted.

Hasan, too, said he is excited about progress in the field. “We are in the middle of a topological revolution in physics, for sure,” he said.

The Advanced Light Source (ALS) is a DOE Office of Science User Facility. Operation of ALS and this work is supported by the DOE Office of Science.

# # #

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

X
X
X
  • Filters

  • × Clear Filters

What's On Your Skin? Archaea, That's What

It turns out your skin is crawling with single-celled microorganisms - (break)and they're not just bacteria. A study by the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the Medical University of Graz has found that the skin microbiome also contains archaea, a type of extreme-loving microbe, and that the amount of it varies with age.

Magnetic Particles that Flock Like Birds

Tracking movements of individual particles provides understanding of collective motions, synchronization and self-assembly.

'On Your Mark, Get Set' Neutrons Run Enzyme's Reactivity for Better Biofuel Production

Producing biofuels like ethanol from plant materials requires various enzymes to break down the cellulosic fibers. Researchers from ORNL and NC State used neutrons to identify the specifics of an enzyme-catalyzed reaction that could significantly reduce the total amount of enzymes used, improving production processes and lowering costs.

Magnetic Curve Balls

A twisted array of atomic magnets were driven to move in a curved path, a needed level of control for use in future memory devices.

New "Gold Standard" for Flexible Electronics

Simple, economical process makes large-diameter, high-performance, thin, transparent, and conductive foils for bendable LEDs and more.

Microbe Mystery Solved: What Happened to the Deepwater Horizon Oil Plume

The Deepwater Horizon oil spill in the Gulf of Mexico in 2010 is one of the most studied spills in history, yet scientists haven't agreed on the role of microbes in eating up the oil. Now a research team at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has identified all of the principal oil-degrading bacteria as well as their mechanisms for chewing up the many different components that make up the released crude oil.

New Class of 'Soft' Semiconductors Could Transform HD Displays

New research by Berkeley Lab scientists could help usher in a new generation of high-definition displays, optoelectronic devices, photodetectors, and more. They have shown that a class of "soft" semiconductors can be used to emit multiple, bright colors from a single nanowire at resolutions as small as 500 nanometers. The work could challenge quantum dot displays that rely upon traditional semiconductor nanocrystals to emit light.

Could This Strategy Bring High-Speed Communications to the Deep Sea?

A new strategy for sending acoustic waves through water could potentially open up the world of high-speed communications to divers, marine research vessels, remote ocean monitors, deep sea robots, and submarines. By taking advantage of the dynamic rotation generated as the acoustic wave travels, also known as its orbital angular momentum, Berkeley Lab researchers were able to pack more channels onto a single frequency, effectively increasing the amount of information capable of being transmitted.

2-D Material's Traits Could Send Electronics R&D Spinning in New Directions

Researchers created an atomically thin material at Berkeley Lab and used X-rays to measure its exotic and durable properties that make it a promising candidate for a budding branch of electronics known as "spintronics."

Manipulating Earth-Abundant Materials to Harness the Sun's Energy

New material based on common iron ore can help turn intermittent sunlight and water into long-lasting fuel.


  • Filters

  • × Clear Filters

Yi Cui Named Blavatnik National Laureate

Pioneering nanoscientist Yi Cui, professor of materials science and engineering at Stanford University and of photon science at the Department of Energy's SLAC National Accelerator Laboratory, has been named a 2017 Blavatnik National Laureate. The $250,000 award recognizes the most promising researchers age 42 and younger at top U.S. academic and research institutions.

Protein Data Takes Significant Step Forward in Medicine

Scientists at the Pacific Northwest National Laboratory and Oregon Health & Science University are part of a nationwide effort to learn more about the role of proteins in cancer biology and to use that information to benefit cancer patients.

The Electrochemical Society and Toyota North America Announce 2017-2018 Fellowship Winners for Projects in Green Energy Technology

The ECS Toyota Young Investigator Fellowship Selection Committee has chosen three winners who will receive $50,000 fellowship awards each for projects in green energy technology. The awardees are Dr. Ahmet Kusoglu, Lawrence Berkeley National Laboratory; Professor Julie Renner, Case Western Reserve University; and Professor Shuhui Sun, Institut National de la Rechersche Scientifique (INRS).

Chicago Quantum Exchange to Create Technologically Transformative Ecosystem

The University of Chicago is collaborating with the U.S. Department of Energy's Argonne National Laboratory and Fermi National Accelerator Laboratory to launch an intellectual hub for advancing academic, industrial and governmental efforts in the science and engineering of quantum information.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Cynthia Jenks Named Director of Argonne's Chemical Sciences and Engineering Division

Argonne has named Cynthia Jenks the next director of the laboratory's Chemical Sciences and Engineering Division. Jenks currently serves as the assistant director for scientific planning and the director of the Chemical and Biological Sciences Division at Ames Laboratory.

Argonne-Developed Technology for Producing Graphene Wins TechConnect National Innovation Award

A method that significantly cuts the time and cost needed to grow graphene has won a 2017 TechConnect National Innovation Award. This is the second year in a row that a team at Argonne's Center for Nanoscale Materials has received this award.

Honeywell UOP and Argonne Seek Research Collaborations in Catalysis Under Technologist in Residence Program

Researchers at Argonne are collaborating with Honeywell UOP scientists to explore innovative energy and chemicals production.

Follow the Fantastic Voyage of the ICARUS Neutrino Detector

The ICARUS neutrino detector, born at Gran Sasso National Lab in Italy and refurbished at CERN, will make its way across the sea to Fermilab this summer. Follow along using an interactive map online.

JSA Awards Graduate Fellowships for Research at Jefferson Lab

Jefferson Sciences Associates announced today the award of eight JSA/Jefferson Lab graduate fellowships. The doctoral students will use the fellowships to support their advanced studies at their universities and conduct research at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) - a U.S. Department of Energy nuclear physics laboratory managed and operated by JSA, a joint venture between SURA and PAE Applied Technologies.


  • Filters

  • × Clear Filters

Magnetic Particles that Flock Like Birds

Tracking movements of individual particles provides understanding of collective motions, synchronization and self-assembly.

Graphene Ribbons Result in 100-Fold Increase in Gold Catalyst's Performance

Bottom-up synthesis of tunable carbon nanoribbons provides a new route to enhance industrial, automotive reactions.

Breaking the Rules to Make Electricity from Waste Heat

More atomic bonds is the key for performance in a newly discovered family of cage-structured compounds.

Magnetic Curve Balls

A twisted array of atomic magnets were driven to move in a curved path, a needed level of control for use in future memory devices.

New "Gold Standard" for Flexible Electronics

Simple, economical process makes large-diameter, high-performance, thin, transparent, and conductive foils for bendable LEDs and more.

New Class of Porous Materials Better Separates Carbon Dioxide from Other Gases

Enhanced stability in the presence of water could help reduce smokestack emissions of greenhouse gases.

Manipulating Earth-Abundant Materials to Harness the Sun's Energy

New material based on common iron ore can help turn intermittent sunlight and water into long-lasting fuel.

Oxygen: The Jekyll and Hyde of Biofuels

Scientists are devising ways to protect plants, biofuels and, ultimately, the atmosphere itself from damage caused by an element that sustains life on earth.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.


Spotlight

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park





Showing results

0-4 Of 2215