X
X
X

Filters:

How a Single Chemical Bond Balances Cells Between Life and Death

With SLAC's X-ray laser and synchrotron, scientists measured exactly how much energy goes into keeping a crucial chemical bond from triggering a cell's death spiral.

New Efficient, Low-Temperature Catalyst for Converting Water and CO to Hydrogen Gas and CO2

Scientists have developed a new low-temperature catalyst for producing high-purity hydrogen gas while simultaneously using up carbon monoxide (CO). The discovery could improve the performance of fuel cells that run on hydrogen fuel but can be poisoned by CO.

Study Sheds Light on How Bacterial Organelles Assemble

Scientists at Berkeley Lab and Michigan State University are providing the clearest view yet of an intact bacterial microcompartment, revealing at atomic-level resolution the structure and assembly of the organelle's protein shell. This work can help provide important information for research in bioenergy, pathogenesis, and biotechnology.

A Single Electron's Tiny Leap Sets Off 'Molecular Sunscreen' Response

In experiments at the Department of Energy's SLAC National Accelerator Laboratory, scientists were able to see the first step of a process that protects a DNA building block called thymine from sun damage: When it's hit with ultraviolet light, a single electron jumps into a slightly higher orbit around the nucleus of a single oxygen atom.

Researchers Find New Mechanism for Genome Regulation

The same mechanisms that separate mixtures of oil and water may also help the organization of an unusual part of our DNA called heterochromatin, according to a new study by Berkeley Lab researchers. They found that liquid-liquid phase separation helps heterochromatin organize large parts of the genome into specific regions of the nucleus. The work addresses a long-standing question about how DNA functions are organized in space and time, including how genes are silenced or expressed.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.

SLAC Experiment is First to Decipher Atomic Structure of an Intact Virus with an X-ray Laser

An international team of scientists has for the first time used an X-ray free-electron laser to unravel the structure of an intact virus particle on the atomic level. The method dramatically reduces the amount of virus material required, while also allowing the investigations to be carried out several times faster than before. This opens up entirely new research opportunities.

New Perspectives Into Arctic Cloud Phases

Teamwork provides insight into complicated cloud processes that are important to potential environmental changes in the Arctic.

Illuminating a Better Way to Calculate Excitation Energy

In a new study appearing this week in The Journal of Chemical Physics, researchers demonstrate a new method to calculate excitation energies. They used a new approach based on density functional methods, which use an atom-by-atom approach to calculate electronic interactions. By analyzing a benchmark set of small molecules and oligomers, their functional produced more accurate estimates of excitation energy compared to other commonly used density functionals, while requiring less computing power.


Filters:

Chicago Quantum Exchange to Create Technologically Transformative Ecosystem

The University of Chicago is collaborating with the U.S. Department of Energy's Argonne National Laboratory and Fermi National Accelerator Laboratory to launch an intellectual hub for advancing academic, industrial and governmental efforts in the science and engineering of quantum information.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Cynthia Jenks Named Director of Argonne's Chemical Sciences and Engineering Division

Argonne has named Cynthia Jenks the next director of the laboratory's Chemical Sciences and Engineering Division. Jenks currently serves as the assistant director for scientific planning and the director of the Chemical and Biological Sciences Division at Ames Laboratory.

Argonne-Developed Technology for Producing Graphene Wins TechConnect National Innovation Award

A method that significantly cuts the time and cost needed to grow graphene has won a 2017 TechConnect National Innovation Award. This is the second year in a row that a team at Argonne's Center for Nanoscale Materials has received this award.

Honeywell UOP and Argonne Seek Research Collaborations in Catalysis Under Technologist in Residence Program

Researchers at Argonne are collaborating with Honeywell UOP scientists to explore innovative energy and chemicals production.

Follow the Fantastic Voyage of the ICARUS Neutrino Detector

The ICARUS neutrino detector, born at Gran Sasso National Lab in Italy and refurbished at CERN, will make its way across the sea to Fermilab this summer. Follow along using an interactive map online.

JSA Awards Graduate Fellowships for Research at Jefferson Lab

Jefferson Sciences Associates announced today the award of eight JSA/Jefferson Lab graduate fellowships. The doctoral students will use the fellowships to support their advanced studies at their universities and conduct research at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) - a U.S. Department of Energy nuclear physics laboratory managed and operated by JSA, a joint venture between SURA and PAE Applied Technologies.

Muon Magnet's Moment Has Arrived

On May 31, the 50-foot-wide superconducting electromagnet at the center of the Muon g-2 experiment saw its first beam of muon particles from Fermilab's accelerators, kicking off a three-year effort to measure just what happens to those particles when placed in a stunningly precise magnetic field. The answer could rewrite scientists' picture of the universe and how it works.

Seven Small Businesses to Collaborate with Argonne to Solve Technical Challenges

Seven small businesses have been selected to collaborate with researchers at Argonne to address technical challenges as part of DOE's Small Business Vouchers Program.

JSA Names Charles Perdrisat and Charles Sinclair as Co-Recipients of its 2017 Outstanding Nuclear Physicist Prize

Jefferson Science Associates, LLC, announced today that Charles Perdrisat and Charles Sinclair are the recipients of the 2017 Outstanding Nuclear Physicist Prize. The 2017 JSA Outstanding Nuclear Physicist Award is jointly awarded to Charles Perdrisat for his pioneering implementation of the polarization transfer technique to determine proton elastic form factors, and to Charles Sinclair for his crucial development of polarized electron beam technology, which made such measurements, and many others, possible.


Filters:

Oxygen: The Jekyll and Hyde of Biofuels

Scientists are devising ways to protect plants, biofuels and, ultimately, the atmosphere itself from damage caused by an element that sustains life on earth.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.

New Perspectives Into Arctic Cloud Phases

Teamwork provides insight into complicated cloud processes that are important to potential environmental changes in the Arctic.

Mountaintop Plants and Soils to Become Out of Sync

Plants and soil microbes may be altered by climate warming at different rates and in different ways, meaning vital nutrient patterns could be misaligned.

If a Tree Falls in the Amazon

For the first time, scientists pinpointed how often storms topple trees, helping to predict how changes in Amazonia affect the world.

Turning Waste into Fuels, Microbial Style

A newly discovered metabolic process linking different bacteria in a community could enhance bioenergy production.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Electrifying Magnetism

Researchers create materials with controllable electrical and magnetic properties, even at room temperature.

One Step Closer to Practical Fast Charging Batteries

Novel electrode materials have designed pathways for electrons and ions during the charge/discharge cycle.


Scientists Help Thin-Film Ferroelectrics Go Extreme

Article ID: 674424

Released: 2017-05-09 20:05:53

Source Newsroom: Lawrence Berkeley National Laboratory

  • Credit: Anoop Damodaran/Berkeley Lab

    On the left is a low-resolution scanning transmission electron microscopy (STEM) image of a ferroelectric material that is continuously graded from barium strontium titanate (BSTO, top) to barium titanate (BTO, bottom). The material is grown on a gadolinium scandate (GSO) substrate buffered by a strontium ruthenate (SRO) bottom electrode. To the right are local nanobeam diffraction-based 2D maps of a-axis and c-axis lattice parameters that confirm large strain gradients in the ferroelectric material. The material is promising as electrically-tunable capacitors with extreme temperature stability.

Scientists have greatly expanded the range of functional temperatures for ferroelectrics, a key material used in a variety of everyday applications, by creating the first-ever polarization gradient in a thin film.

The achievement, reported May 10 in Nature Communications by researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), paves the way for developing devices capable of supporting wireless communications in extreme environments, from inside nuclear reactors to Earth’s polar regions.

Ferroelectric materials are prized for having a spontaneous polarization that is reversible by an applied electric field and for the ability to produce electric charges in response to physical pressure. They can function as capacitors, transducers, and oscillators, and they can be found in applications such as transit cards, ultrasound imaging, and push-button ignition systems.

Berkeley Lab scientists created a strain and chemical gradient in a 150-nanometer-thin film of barium strontium titanate, a widely used ferroelectric material. The researchers were able to directly measure the tiny atomic displacements in the material using cutting-edge advanced microscopy at Berkeley Lab, finding gradients in the polarization. The polarization varied from 0 to 35 microcoulombs per centimeter squared across the thickness of the thin-film material.

Tossing out textbook predictions

“Traditional physics and engineering textbooks wouldn’t have predicted this observation,” said study principal investigator Lane Martin, faculty scientist at Berkeley Lab’s Materials Sciences Division and UC Berkeley associate professor of materials and engineering. “Creating gradients in materials costs a lot of energy—Mother Nature doesn’t like them—and the material works to level out such imbalances in whatever way possible. In order for a large gradient like the one we have here to occur, we needed something else in the material to compensate for this unfavorable structure. In this case, the key is the material’s naturally occurring defects, such as charges and vacancies of atoms, that accommodate the imbalance and stabilize the gradient in polarization.”

Creating a polarization gradient had the beneficial effect of expanding the temperature range for optimal performance by the ferroelectric material. Barium titanate’s function is strongly temperature-dependent with relatively small effects near room temperature and a large, sharp peak in response at around 120 degrees Celsius. This makes it hard to achieve well-controlled, reliable function as the temperature varies beyond a rather narrow window. To adapt the material to work for applications at and around room temperature, engineers tune the chemistry of the material, but the range of temperatures where the materials are useful remains relatively narrow.

"The new polarization profile we have created gives rise to a nearly temperature-insensitive dielectric response, which is not common in ferroelectric materials," said Martin. "By making a gradient in the polarization, the ferroelectric simultaneously operates like a range or continuum of materials, giving us high-performance results across a 500-degree Celsius window. In comparison, standard, off-the-shelf materials today would give the same responses across a much smaller 50-degree Celsius window."

Beyond the obvious expansions to hotter and colder environments, the researchers noted that this wider temperature range could shrink the number of components needed in electronic devices and potentially reduce the power draw of wireless phones.

"The smartphone I'm holding in my hand right now has dielectric resonators, phase shifters, oscillators—more than 200 elements altogether—based on similar materials to what we studied in this paper," said Martin. “About 45 of those elements are needed to filter the signals coming to and from your cell phone to make sure you have a clear signal. That’s a huge amount of real estate to dedicate to one function.”

Because changes in temperature alter the resonance of the ferroelectric materials, there are constant adjustments being made to match the materials to the wavelength of the signals sent from cell towers. Power is needed to tune the signal, and the more out of tune it is, the more power the phone needs to use to get a clear signal for the caller. A material with a polarization gradient capable operating over large temperatures regimes could reduce the power needed to tune the signal.

Faster detectors enable new imaging techniques

Understanding the polarization gradient entailed the use of epitaxial strain, a strategy in which a crystalline overlayer is grown on a substrate, but with a mismatch in the lattice structure. This strain engineering technique, commonly employed in semiconductor manufacturing, helps control the structure and enhance performance in materials.

Recent advances in electron microscopy have allowed researchers to obtain atomic-scale structural data of the strained barium strontium titanate, and to directly measure the strain and polarization gradient.

"We have established a way to use nanobeam scanning diffraction to record diffraction patterns from each point, and afterwards analyze the datasets for strain and polarization data," said study co-author Andrew Minor, director of the National Center for Electron Microscopy at Berkeley Lab’s Molecular Foundry, a DOE Office of Science User Facility. "This type of mapping, pioneered at Berkeley Lab, is both new and very powerful."

Another key factor was the speed of the detector, Minor added. For this paper, data was obtained at a rate of 400 frames per second, an order of magnitude faster than the 30-frame-per-second rate from just a few years ago. This technique is now available for users at the Foundry.

"We're seeing a revolution in microscopy related to the use of direct electron detectors that is changing many fields of research," said Minor, who also holds an appointment as a UC Berkeley professor of materials science and engineering. "We're able to both see and measure things at a scale that was hard to imagine until recently."

Co-lead authors of the study are postdoctoral researcher Anoop Damodaran and graduate student Shishir Pandya at UC Berkeley's Department of Materials Science and Engineering. Other study co-authors include researchers from the University of Pennsylvania, the Carnegie Institution for Science, and Rutgers University.  

This work included support from DOE's Office of Science, the Army Research Office, the National Science Foundation, the Gordon and Betty Moore Foundation and the Carnegie Institution for Science.

###

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.