Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-05-15 15:05:39
  • Article ID: 674750

Assembling Life's Molecular Motor

Titan helps UIUC team master bacterial photosynthetic system

  • Credit: Barry Isralewitz, University of Illinois at Urbana-Champaign

    ATP hydrolysis-driven rotation of the central stalk in the V-type ATP synthase of the bacteria Enterococcus hirae depicts chemo-mechanical coupling of the molecular motor. These simulations were carried out on the Titan supercomputer using NAMD2.12. Visualization and movie rendering were completed on VMD1.9.3.

Despite the grand diversity among living organisms, the molecule used to store and transmit energy within aerobic, or oxygen-using, cells is remarkably the same. From bacteria to fungi, plants, and animals, adenosine triphosphate (ATP) serves as the universal energy currency of life, fueling the processes cells need to survive and function.

Over the course of a day, an individual will typically use the equivalent of his or her bodyweight in ATP; however, the human body carries only a small amount of the molecule at any one time. That means cells must constantly recycle or replenish their limited capacity, relying on a highly efficient molecular motor called ATP synthase to do the job.

As part of a project dedicated to modeling how single-celled purple bacteria turn light into food, a team of computational scientists from the University of Illinois at Urbana-Champaign (UIUC) simulated a complete ATP synthase in all-atom detail. The work builds on the project’s first phase—a 100-million atom photosynthetic organelle called a chromatophore—and gives scientists an unprecedented glimpse into a biological machine whose energy efficiency far surpasses that of any artificial system.

First proposed under the leadership of the late Klaus Schulten, a pioneer in the field of computational biophysics and the founder of the Theoretical and Computational Biophysics Group at UIUC, the research has progressed under the stewardship of Abhishek Singharoy, co-principal investigator and a National Science Foundation postdoctoral fellow with UIUC’s Center for the Physics of Living Cells.

In addition to Singharoy, the team includes members from the groups of UIUC professors Emad Tajkhorshid, Zaida Luthey-Schulten and Aleksei Aksimentiev; research scientist Melih Sener; and developers Barry Isralewitz, Jim Phillips, and John Stone. Experimental collaborator Neil Hunter of the University of Sheffield in England also took part in the project.

The UIUC-led team built and tested its mega-model under a multiyear allocation awarded through the Innovative and Novel Computational Impact on Theory and Experiment program on the Titan supercomputer, a Cray XK7 managed by the US Department of Energy’s (DOE’s) Oak Ridge Leadership Computing Facility (OLCF), a DOE Office of Science User Facility located at DOE’s Oak Ridge National Laboratory.

Using Titan, the team produced a virtual tool that can predict in exacting detail the chemical energy output of a photosynthetic system based on the amount of sunlight absorbed. The research could one day contribute to advanced clean energy technology that incorporates biological concepts.

“Nature has designed the chromatophore in such a way that it can generate enough ATPs for these bacteria to survive in low-light environments such as the bottom of ponds and lakes,” Singharoy said. “Our work captured this energy conversion process in all-atom detail and allowed us to predict its efficiency.”

Light in motion

Often referred to as the power plant of the cell, ATP synthase is a complex enzyme that speeds up the synthesis of its molecular precursors, adenosine diphosphate (ADP) and phosphate. Embedded within the chromatophore’s inner and outer membrane, the enzymatic motor consists of three major parts—an ion-powered rotor, a central stalk, and a protein ring.

Similar to a waterwheel that’s turned by the force of a flowing stream, the ATP synthase rotor harnesses the electrochemically spurred movement of ions, such as protons or sodium, from high concentration to low concentration across the membrane. The resulting mechanical energy transfers to the central stalk, which assists the protein ring in synthesizing ATP.

Remarkably, the process works just as well in reverse. When too many ions build up on the outer side of the chromatophore, the ATP synthase protein ring will break down ATP into ADP, a process called hydrolysis, and ions will flow back to the inner side.

“Normally, you would expect a lot of energy loss during this process, like in any man-made motor, but it turns out ATP synthase has very little waste,” Singharoy said. “How this motor is designed to minimize energy loss is the question we started asking.”

Similar to a tinkerer disassembling an engine to better understand how it works, Singharoy’s team broke down the 300,000-atom enzyme into its constituent parts. Drawing from decades of research into ATP synthase, past models, and new experimental data supplied by a Japanese team led by Takeshi Murata of the RIKEN Center for Life Science Technologies, the team constructed and simulated the pieces of the ATP synthase puzzle independently and together on Titan.

To capture important processes that play out over millisecond time scales, Singharoy, in collaboration with Christophe Chipot of the French National Center for Scientific Research and Mahmoud Moradi of the University of Arkansas, deployed the molecular dynamics code NAMD strategically. The team executed an ensemble strategy, tracking the motion of around 1,000 replicas of ATP synthase simultaneously with time steps of 2 femtoseconds, or 2,000 trillionths of a second. In total, the team accumulated 65 microseconds (65 millionths of a second) of simulation time, using this information to extrapolate motions that occur over the course of a millisecond (1 thousandth of a second).

As a result, the team identified previously undocumented swiveling motions in the protein ring that help explain the molecular motor’s efficiency. Similarly, the team’s simulations captured the rubber band–like elasticity of the enzyme’s central stalk. Singharoy’s team estimated that when paired with the protein ring, the stalk absorbs about 75 percent of the energy released during hydrolysis.

Additionally, simulations of the protein ring by itself revealed a unit that can function independently, a finding reported in experiments but not in computational detail. “Even in the absence of the center stalk, the protein ring itself is capable of ATP hydrolysis. It’s not very efficient, but it has the capability,” Singharoy said.

The big picture

After simulating its complete ATP synthase model, the UIUC team incorporated the enzyme into its previously constructed chromatophore model to gain the most comprehensive picture of a photosynthetic system to date.

With this virtual biological solar panel, the team could measure each step of the energy conversion process—from light harvesting, to electron and proton transfer, to ATP synthesis—and better understand its mechanical underpinnings.

Nature’s chromatophore is designed for low-light intensity, only absorbing between 3 and 5 percent of sunlight on a typical day. The team, through the efforts of Sener, found this absorption rate translates to around 300 ATPs per second, which is the amount a bacterium needs to stay alive.

Having studied nature’s design, the team now wanted to see if it could improve upon it. Assuming the same amount of light intensity, the team designed an artificial chromatophore with a decidedly unnatural protein composition, boosting the presence of two types of specialized proteins. Analysis of the new design predicted a tripling of the photosynthetic system’s ATP production, opening up the possibility for the chromatophore’s human-guided optimization.

“You could potentially genetically modify a chromatophore or change its concentration of proteins,” Singharoy said. “These predictions promise to bring forth new developments in artificial photosynthesis.”

Under its latest INCITE allocation, the UIUC team is pivoting to energy conversion in a different lifeform: animals. Taking what it has learned from modeling photosynthesis in purple bacteria, the team is modeling cellular respiration, the process animal cells use to convert nutrients to ATP.

“You have at least two proteins in common between respiration and photosynthesis,” said Singharoy, who is continuing his involvement with the project as an assistant professor at Arizona State University. “The question is what design principles carry over into higher organisms?”

Life in situ

Simulation of the chromatophore—complete with ATP synthase—marks an ongoing shift in computational biophysics from analyzing individual cell parts (e.g., single proteins and hundreds of atoms) to analyzing entire cell systems (e.g., hundreds of proteins and millions of atoms).

Schulten, who passed away in October 2016, understood better than most people the significance of using computers to simulate nature. In an interview in 2015, he laid out his rationale for modeling the chromatophore. “The motivation is to understand a very key step of life on Earth on which all life depends today. Energy-wise 95 percent of life on Earth depends on photosynthesis, including humans,” he said.

Schulten also understood the milestone a specialized organelle represented on the road to simulating a complete single-celled organism. “We don’t have anything smaller than a cell that we would call alive,” he said. “It’s the smallest living entity, and we want to understand it.”

With next-generation supercomputers, including the OLCF’s Summit, set to come online in 2018, the research group Schulten founded in 1989 is preparing to take on the grand challenge of simulating a cell.

Under the leadership of Tajkhorshid, the team plans to simulate the first billion-atom cell, including the basic components a cell needs to survive and grow. Improvements to NAMD and work being done under the OLCF’s Center for Accelerated Application Readiness program are helping to make the vision of Schulten and others a reality.

“We keep moving forward,” Singharoy said. “Our exhaustive study of a complete organelle in all-atom detail has opened the door for a full cell in all-atom detail.”

The National Institutes of Health and the National Science Foundation provided the primary support for this work.  Part of the research was performed at the Photosynthetic Antenna Research Center, a DOE Energy Frontier Research Center led by Washington University in St. Louis and supported by DOE’s Office of Science.

Related Publications:

Abhishek Singharoy, Christophe Chipot, Mahmoud Moradi, and Klaus Schulten, “Chemomechanical Coupling in Hexameric Protein–Protein Interfaces Harness Energy Within V–Type ATPases.” Journal of the American Chemical Society 139, no. 1 (2017): 293–310, doi:10.1021/jacs.6b10744.

Abhishek Singharoy, Angela M. Barragan, Sundarapandian Thangapandian, Emad Tajkhorshid, and Klaus Schulten, “Binding Site Recognition and Docking Dynamics of a Single Electron Transport Protein: Cytochrome c2.” Journal of the American Chemical Society 138, no. 37 (2016): 12077–12089, doi:10.1021/jacs.6b01193.

Melih Sener, Johan Strumpfer, Abhishek Singharoy, C. Neil Hunter, and Klaus Schulten, “Overall Energy Conversion Efficiency of a Photosynthetic Vesicle.” eLife 5 (2016): e09541, doi:10.7554/eLife.09541.

Oak Ridge National Laboratory is supported by the US Department of Energy’s Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

X
X
X
  • Filters

  • × Clear Filters

Coupling Experiments to Theory to Build a Better Battery

A Berkeley Lab-led team of researchers has reported that a new lithium-sulfur battery component allows a doubling in capacity compared to a conventional lithium-sulfur battery, even after more than 100 charge cycles.

DRIFTing to Fast, Precise Data

Non-destructive technique identifies key variations in Alaskan soils, quickly providing insights into carbon levels.

A Shortcut to Modeling Sickle Cell Disease

Using Oak Ridge National Laboratory's Titan supercomputer, a team led by Brown University's George Karniadakis devised a multiscale model of sickle cell disease that captures what happens inside a red blood cell affected by the disease.

Remotely Predicting Leaf Age in Tropical Forests

New approach offers data across species, sites, and canopies, providing insights into carbon uptake by forests.

Conservation Mind Game

A new study led by Kathryn Caldwell, an assistant professor of psychology at Ithaca College, demonstrates that homeowners can be encouraged to make changes to their energy use with a simple education plan and some helpful tricks from the world of social psychology.

X-Rays Reveal 'Handedness' in Swirling Electric Vortices

Scientists used spiraling X-rays at Berkeley Lab to observe, for the first time, a property that gives left- or right-handedness to swirling electric patterns - dubbed polar vortices - in a layered material called a superlattice.

Breaking Bad Metals with Neutrons

By combining the latest developments in neutron scattering and theory, researchers are close to predicting phenomena like superconductivity and magnetism in strongly correlated electron systems. It is likely that the next advances in superconductivity and magnetism will come from such systems, but they might also be used in completely new ways such as quantum computing.

ORNL Researchers Use Titan to Accelerate Design, Training of Deep Learning Networks

For deep learning to be effective, existing neural networks to be modified, or novel networks designed and then "trained" so that they know precisely what to look for and can produce valid results. This is a time-consuming and difficult task, but one that a team of ORNL researchers recently demonstrated can be dramatically expedited with a capable computing system.

Dark Energy Survey Publicly Releases First Three Years of Data

At a special session held during the American Astronomical Society meeting in Washington, D.C., scientists on the Dark Energy Survey (DES) announced today the public release of their first three years of data. This first major release of data from the Survey includes information on about 400 million astronomical objects, including distant galaxies billions of light-years away as well as stars in our own galaxy.

Ingredients for Life Revealed in Meteorites That Fell to Earth

A detailed study of blue salt crystals found in two meteorites that crashed to Earth - which included X-ray experiments at Berkeley Lab - found that they contain both liquid water and a mix of complex organic compounds including hydrocarbons and amino acids.


  • Filters

  • × Clear Filters

Kelsey Stoerzinger Earns Young Investigator Lectureship

Kelsey Stoerzinger, Pauling Fellow at Pacific Northwest National Laboratory, is one of the 2018 Caltech Young Investigator Lecturers in Engineering and Applied Physics.

North Dakota State University Joins Two National Distributed Computing Groups

The NDSU Center for Computationally Assisted Science and Technology (CCAST) joins OSG (Open Science Grid) and XSEDE (Extreme Science and Engineering Discovery Environment).

DOE Announces Funding for New HPC4Manufacturing Industry Projects

The Department of Energy's Advanced Manufacturing Office (AMO) today announced the funding of $1.87 million for seven new industry projects under an ongoing initiative designed to utilize DOE's high-performance computing (HPC) resources and expertise to advance U.S. manufacturing and clean energy technologies.

DOE Announces First Awardees for New HPC4Materials for Severe Environments Program

The Department of Energy's Office of Fossil Energy (FE) today announced the funding of $450,000 for the first two private-public partnerships under a brand-new initiative aimed at discovering, designing and scaling up production of novel materials for severe environments.

Two Argonne Scientists Recognized for a Decade of Breakthroughs

Two scientists with the U.S. Department of Energy's (DOE) Argonne National Laboratory have been named to the Web of Science's Highly Cited List of 2017, ranking in the top 1 percent of their peers by citations and subject area. Materials Scientist Khalil Amine and Energy and Environmental Policy Scientist David Streets say they are thrilled to see their work -- and the laboratory -- recognized in such a way.

Argonne Welcomes Department of Energy Secretary Perry

U.S. Department of Energy Secretary Rick Perry visited Argonne National Laboratory yesterday, getting a first-hand view of the multifaceted and interdisciplinary research program laboratory of the Department.

Argonne names John Quintana Deputy Laboratory Director for Operations and COO

John Quintana has been named Deputy Laboratory Director for Operations and Chief Operations Officer (COO) of the U.S. Department of Energy's (DOE) Argonne National Laboratory.

Developing Next-Generation Sensing Technologies

Recently, the Advanced Research Projects Agency-Energy (ARPA-E) announced $20 million in funding for 15 projects that will develop a new class of sensor systems to enable significant energy savings via reduced demand for heating and cooling in residential and commercial buildings.

Supporting the Development of Offshore Wind Power Plants

Offshore wind is becoming a reality in the United States, especially in the northeast states. To support this development, the Center for Future Energy System (CFES) at Rensselaer Polytechnic Institute will present a webinar titled "Turbine and Transmission System Technologies for Offshore Wind (OSW) Power Plants." The program will be held on Wednesday, Dec. 20, from 2 to 4 p.m. Advance registration is required.

LLNL Releases Newly Declassified Nuclear Test Videos

Researchers at Lawrence Livermore National Laboratory (LLNL) released 62 newly declassified videos today of atmospheric nuclear tests films that have never before been seen by the public.


  • Filters

  • × Clear Filters

Exploring Past, Present, and Future Water Availability Regionally, Globally

New open-source software simulates river and runoff resources.

Arctic Photosynthetic Capacity and Carbon Dioxide Assimilation Underestimated by Terrestrial Biosphere Models

New measurements offer data vital to projecting plant response to environmental changes.

DRIFTing to Fast, Precise Data

Non-destructive technique identifies key variations in Alaskan soils, quickly providing insights into carbon levels.

Superconducting Tokamaks Are Standing Tall

Plasma physicists significantly improve the vertical stability of a Korean fusion device.

Graphene Flexes Its Muscle

Crumpling reduces rigidity in an otherwise stiff material, making it less prone to catastrophic failure.

Remotely Predicting Leaf Age in Tropical Forests

New approach offers data across species, sites, and canopies, providing insights into carbon uptake by forests.

What's the Noise Eating Quantum Bits?

The magnetic noise caused by adsorbed oxygen molecules is "eating at" the phase stability of quantum bits, mitigating the noise is vital for future quantum computers.

Rewritable Wires Could Mean No More Obsolete Circuitry

An electric field switches the conductivity on and off in atomic-scale channels, which could allow for upgrades at will.

Filtering Water Better than Nature

Water passes through human-made straws faster than the "gold standard" protein, allowing us to filter seawater.

Machine Learning Provides a Bridge to the Texture of the Quantum World

Machine learning and neural networks are the foundation of artificial intelligence and image recognition, but now they offer a bridge to see and recognize exotic insulating phases in quantum materials.


Spotlight

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)





Showing results

0-4 Of 2215