X
X
X

Filters:

Printed, Flexible and Rechargeable Battery Can Power Wearable Sensors

Nanoengineers at the University of California San Diego have developed the first printed battery that is flexible, stretchable and rechargeable. The zinc batteries could be used to power everything from wearable sensors to solar cells and other kinds of electronics. The work appears in the April 19, 2017 issue of Advanced Energy Materials.

Neutrons Provide the First Nanoscale Look at a Living Cell Membrane

A research team from the Department of Energy's Oak Ridge National Laboratory has performed the first-ever direct nanoscale examination of a living cell membrane. In doing so, it also resolved a long-standing debate by identifying tiny groupings of lipid molecules that are likely key to the cell's functioning.

How X-Rays Helped to Solve Mystery of Floating Rocks

Experiments at Berkeley Lab's Advanced Light Source have helped scientists to solve a mystery of why some rocks can float for years in the ocean, traveling thousands of miles before sinking.

Special X-Ray Technique Allows Scientists to See 3-D Deformations

In a new study published last Friday in Science, researchers at Argonne used an X-ray scattering technique called Bragg coherent diffraction imaging to reconstruct in 3-D the size and shape of grain defects. These defects create imperfections in the lattice of atoms inside a grain that can give rise to interesting material properties and effects.

Neptune: Neutralizer-Free Plasma Propulsion

The most established plasma propulsion concepts are gridded-ion thrusters that accelerate and emit a larger number of positively charged particles than those that are negatively charged. To enable the spacecraft to remain charge-neutral, a "neutralizer" is used to inject electrons to exactly balance the positive ion charge in the exhaust beam. However, the neutralizer requires additional power from the spacecraft and increases the size and weight of the propulsion system. Researchers are investigating how the radio-frequency self-bias effect can be used to remove the neutralizer altogether, and they report their work in this week's Physics of Plasmas.

Report Sheds New Insights on the Spin Dynamics of a Material Candidate for Low-Power Devices

In a report published in Nano LettersArgonne researchers reveal new insights into the properties of a magnetic insulator that is a candidate for low-power device applications; their insights form early stepping-stones towards developing high-speed, low-power electronics that use electron spin rather than charge to carry information.

Researchers Find Computer Code That Volkswagen Used to Cheat Emissions Tests

An international team of researchers has uncovered the mechanism that allowed Volkswagen to circumvent U.S. and European emission tests over at least six years before the Environmental Protection Agency put the company on notice in 2015 for violating the Clean Air Act. During a year-long investigation, researchers found code that allowed a car's onboard computer to determine that the vehicle was undergoing an emissions test.

Physicists Discover That Lithium Oxide on Tokamak Walls Can Improve Plasma Performance

A team of physicists has found that a coating of lithium oxide on the inside of fusion machines known as tokamaks can absorb as much deuterium as pure lithium can.

Scientists Perform First Basic Physics Simulation of Spontaneous Transition of the Edge of Fusion Plasma to Crucial High-Confinement Mode

PPPL physicists have simulated the spontaneous transition of turbulence at the edge of a fusion plasma to the high-confinement mode that sustains fusion reactions. The research was achieved with the extreme-scale plasma turbulence code XGC developed at PPPL in collaboration with a nationwide team.

Green Fleet Technology

New research at Penn State addresses the impact delivery trucks have on the environment by providing green solutions that keep costs down without sacrificing efficiency.


Filters:

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Describing the dizzying pace of technological innovation, former United States Secretary of Energy Ernest J. Moniz urged graduates to "anticipate career change, welcome it, and manage it to your and your society's benefit" at the 211th Commencement at Rensselaer Polytechnic Institute (RPI) Saturday.

ORNL Welcomes Innovation Crossroads Entrepreneurial Research Fellows

Oak Ridge National Laboratory today welcomed the first cohort of innovators to join Innovation Crossroads, the Southeast region's first entrepreneurial research and development program based at a U.S. Department of Energy national laboratory.

Department of Energy Secretary Recognizes Argonne Scientists' Work to Fight Ebola, Cancer

Two groups of researchers at Argonne earned special awards from the office of the U.S. Secretary of Energy for addressing the global health challenges of Ebola and cancer.

Jefferson Science Associates, LLC Recognized for Leadership in Small Business Utilization

Jefferson Lab/Jefferson Science Associates has a long-standing commitment to doing business with and mentoring small businesses. That commitment and support received national recognition at the 16th Annual Dept. of Energy Small Business Forum and Expo held May 16-18, 2017 in Kansas City, Mo.

Rensselaer Polytechnic Institute President's Commencement Colloquy to Address "Criticality, Incisiveness, Creativity"

To kick off the Rensselaer Polytechnic Institute Commencement weekend, the annual President's Commencement Colloquy will take place on Friday, May 19, beginning at 3:30 p.m. The discussion, titled "Criticality, Incisiveness, Creativity," will include the Honorable Ernest J. Moniz, former Secretary of Energy, and the Honorable Roger W. Ferguson Jr., President and CEO of TIAA, and will be moderated by Rensselaer President Shirley Ann Jackson.

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

The Tennessee Higher Education Commission has approved a new doctoral program in data science and engineering as part of the Bredesen Center for Interdisciplinary Research and Graduate Education.

SurfTec Receives $1.2 Million Energy Award to Develop Novel Coating

The Department of Energy has awarded $1.2 million to SurfTec LLC, a company affiliated with the U of A Technology Development Foundation, to continue developing a nanoparticle-based coating to replace lead-based journal bearings in the next generation of electric machines.

Ames Laboratory Scientist Inducted Into National Inventors Hall of Fame

Iver Anderson, senior metallurgist at Ames Laboratory, has been inducted into the National Inventors Hall of Fame.

DOE HPC4Mfg Program Funds 13 New Projects to Improve U.S. Energy Technologies Through High Performance Computing

A U.S. Department of Energy (DOE) program designed to spur the use of high performance supercomputers to advance U.S. manufacturing is funding 13 new industry projects for a total of $3.9 million.

Penn State Wind Energy Club Breezes to Victory in Collegiate Wind Competition

The Penn State Wind Energy Club breezed through the field at the U.S. Department of Energy Collegiate Wind Competition 2017 Technical Challenge, held April 20-22 at the National Wind Technology Center near Boulder, Colorado--earning its third overall victory in four years at the Collegiate Wind Competition.


Filters:

Casting a Wide Net

Designed molecules will provide positive impacts in energy production by selectively removing unwanted ions from complex solutions.

New Software Tools Streamline DNA Sequence Design-and-Build Process

Enhanced software tools will accelerate gene discovery and characterization, vital for new forms of fuel production.

The Ultrafast Interplay Between Molecules and Materials

Computer calculations by the Center for Solar Fuels, an Energy Frontier Research Center, shed light on nebulous interactions in semiconductors relevant to dye-sensitized solar cells.

Supercapacitors: WOODn't That Be Nice

Researchers at Nanostructures for Electrical Energy Storage, an Energy Frontier Research Center, take advantage of nature-made materials and structure for energy storage research.

Groundwater Flow Is Key for Modeling the Global Water Cycle

Water table depth and groundwater flow are vital to understanding the amount of water that plants transmit to the atmosphere.

Finding the Correct Path

A new computational technique greatly simplifies the complex reaction networks common to catalysis and combustion fields.

Opening Efficient Routes to Everyday Plastics

A new material from the Inorganometallic Catalyst Design Center, an Energy Frontier Research Center, facilitates the production of key industrial supplies.

Fight to the Top: Silver and Gold Compete for the Surface of a Bimetallic Solid

It's the classic plot of a buddy movie. Two struggling bodies team up to drive the plot and do good together. That same idea, when it comes to metals, could help scientists solve a big problem: the amount of energy consumed by making chemicals.

Saving Energy Through Light Control

New materials, designed by researchers at the Center for Excitonics, an Energy Frontier Research Center, can reduce energy consumption with the flip of a switch.

Teaching Perovskites to Swim

Scientists at the ANSER Energy Frontier Research Center designed a two-component layer protects a sunlight-harvesting device from water and heat.


Scientists Perform First Basic Physics Simulation of Spontaneous Transition of the Edge of Fusion Plasma to Crucial High-Confinement Mode

Article ID: 675000

Released: 2017-05-18 14:15:55

Source Newsroom: Princeton Plasma Physics Laboratory

  • Credit: Elle Starkman

    PPPL physicists Seung-Hoe Ku, Robert Hager, Choong-Seock Chang, and Randy Michael Churchill

Physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have simulated the spontaneous transition of turbulence at the edge of a fusion plasma to the high-confinement mode (H-mode) that sustains fusion reactions. The detailed simulation is the first basic physics, or first-principles-based, modeling with few simplifying assumptions.

The research was achieved with the extreme-scale plasma turbulence code XGC developed at PPPL in collaboration with a nationwide team. The findings provide the physics-basis for the successful operation of current and future tokamaks that will produce powerful and economical fusion reactions.

This massively parallel simulation, which reveals the physics behind the transition, utilized most of a supercomputer’s power. The XGC code ran for three days and took 90 percent of the capacity of Titan at the Oak Ridge Leadership Computing Facility (OLCF), which is the nation’s most powerful supercomputer for open science and capable of performing up to 27 million billion (1015) operations per second.

“After 35 years, the fundamental physics of the bifurcation of turbulence into H-mode has now been simulated, thanks to the rapid development of the computational hardware and software capability,” said C.S. Chang, first author of the April Physical Review Letters paper [118, 175001 (2017)] that reported the findings. Co-authors included a team from PPPL, the University of California, San Diego, and the MIT Plasma Science and Fusion Center. Seung-Hoe Ku of PPPL performed the simulation.

As an example of the use of the model, the core of the plasma inside the seven-story ITER tokamak, the international fusion experiment under construction in France, will have to be more than 10 times hotter than the core of the sun, whose temperature is 15 million degrees Celsius. Yet the edge of the plasma, located about 2 meters away, will be 1,000 times cooler, with most of the temperature dropping over a radial slope whose width is only a few percent of the total plasma size.

In 1982, German researchers discovered that the edge of the plasma can spontaneously bifurcate into a high pedestal with a steep gradient, or transport barrier, that produces the H-mode confinement and maintains the heat of the plasma core. This bifurcation takes place when the heating power of the tokamak is raised above a critical level.

Creation of the transport barrier occurs almost instantaneously. The buildup results from suppression of the edge turbulence, which drops from high to low amplitude in less than tenth of a millisecond. The puzzle baffling physicists for more than three decades is what causes this transition to happen.

Researchers have long held two conflicting stories, based on reduced models and various degrees of simplifying assumptions, which arise from the complexity of the plasma edge and the lack of computing power. One school proposes that the transformation comes from a turbulence-generated sheared flow of edge plasma generated by a process called “Reynolds stress.” Opposing this view is a school that attributes the bifurcation to a non-turbulent sheared flow.

The PPPL extreme-scale code indicates that both stories are partly correct. The simulation reveals that the bifurcation results from the synergistic relationship between the Reynolds stress-generated sheared flow and the non turbulent-generated sheared flow, which is technically known as the “X-point orbit loss-driven” and “neoclassical” flow. In short, says the paper, “the experimental argument based upon the orbit loss mechanism … and the conventional Reynolds stress argument work together.”

For ITER and other next-generation machines, the bifurcation to H-mode could require an increase in heating power if the non turbulent-driven sheared flow proves weaker than today’s tokamaks require. The reverse also holds true: if the non turbulent-driven sheared flow should prove to be stronger than currently anticipated for ITER, less heating power may be needed to achieve the crucial transformation to H-mode.

The OLCF is a DOE Office of Science User Facility at Oak Ridge National Laboratory. Support for this work came from the DOE Office of Science (Fusion Energy Sciences). PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.