X
X
X

Filters:

How a Single Chemical Bond Balances Cells Between Life and Death

With SLAC's X-ray laser and synchrotron, scientists measured exactly how much energy goes into keeping a crucial chemical bond from triggering a cell's death spiral.

New Efficient, Low-Temperature Catalyst for Converting Water and CO to Hydrogen Gas and CO2

Scientists have developed a new low-temperature catalyst for producing high-purity hydrogen gas while simultaneously using up carbon monoxide (CO). The discovery could improve the performance of fuel cells that run on hydrogen fuel but can be poisoned by CO.

Study Sheds Light on How Bacterial Organelles Assemble

Scientists at Berkeley Lab and Michigan State University are providing the clearest view yet of an intact bacterial microcompartment, revealing at atomic-level resolution the structure and assembly of the organelle's protein shell. This work can help provide important information for research in bioenergy, pathogenesis, and biotechnology.

A Single Electron's Tiny Leap Sets Off 'Molecular Sunscreen' Response

In experiments at the Department of Energy's SLAC National Accelerator Laboratory, scientists were able to see the first step of a process that protects a DNA building block called thymine from sun damage: When it's hit with ultraviolet light, a single electron jumps into a slightly higher orbit around the nucleus of a single oxygen atom.

Researchers Find New Mechanism for Genome Regulation

The same mechanisms that separate mixtures of oil and water may also help the organization of an unusual part of our DNA called heterochromatin, according to a new study by Berkeley Lab researchers. They found that liquid-liquid phase separation helps heterochromatin organize large parts of the genome into specific regions of the nucleus. The work addresses a long-standing question about how DNA functions are organized in space and time, including how genes are silenced or expressed.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.

SLAC Experiment is First to Decipher Atomic Structure of an Intact Virus with an X-ray Laser

An international team of scientists has for the first time used an X-ray free-electron laser to unravel the structure of an intact virus particle on the atomic level. The method dramatically reduces the amount of virus material required, while also allowing the investigations to be carried out several times faster than before. This opens up entirely new research opportunities.

New Perspectives Into Arctic Cloud Phases

Teamwork provides insight into complicated cloud processes that are important to potential environmental changes in the Arctic.

Illuminating a Better Way to Calculate Excitation Energy

In a new study appearing this week in The Journal of Chemical Physics, researchers demonstrate a new method to calculate excitation energies. They used a new approach based on density functional methods, which use an atom-by-atom approach to calculate electronic interactions. By analyzing a benchmark set of small molecules and oligomers, their functional produced more accurate estimates of excitation energy compared to other commonly used density functionals, while requiring less computing power.


Filters:

Chicago Quantum Exchange to Create Technologically Transformative Ecosystem

The University of Chicago is collaborating with the U.S. Department of Energy's Argonne National Laboratory and Fermi National Accelerator Laboratory to launch an intellectual hub for advancing academic, industrial and governmental efforts in the science and engineering of quantum information.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Cynthia Jenks Named Director of Argonne's Chemical Sciences and Engineering Division

Argonne has named Cynthia Jenks the next director of the laboratory's Chemical Sciences and Engineering Division. Jenks currently serves as the assistant director for scientific planning and the director of the Chemical and Biological Sciences Division at Ames Laboratory.

Argonne-Developed Technology for Producing Graphene Wins TechConnect National Innovation Award

A method that significantly cuts the time and cost needed to grow graphene has won a 2017 TechConnect National Innovation Award. This is the second year in a row that a team at Argonne's Center for Nanoscale Materials has received this award.

Honeywell UOP and Argonne Seek Research Collaborations in Catalysis Under Technologist in Residence Program

Researchers at Argonne are collaborating with Honeywell UOP scientists to explore innovative energy and chemicals production.

Follow the Fantastic Voyage of the ICARUS Neutrino Detector

The ICARUS neutrino detector, born at Gran Sasso National Lab in Italy and refurbished at CERN, will make its way across the sea to Fermilab this summer. Follow along using an interactive map online.

JSA Awards Graduate Fellowships for Research at Jefferson Lab

Jefferson Sciences Associates announced today the award of eight JSA/Jefferson Lab graduate fellowships. The doctoral students will use the fellowships to support their advanced studies at their universities and conduct research at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) - a U.S. Department of Energy nuclear physics laboratory managed and operated by JSA, a joint venture between SURA and PAE Applied Technologies.

Muon Magnet's Moment Has Arrived

On May 31, the 50-foot-wide superconducting electromagnet at the center of the Muon g-2 experiment saw its first beam of muon particles from Fermilab's accelerators, kicking off a three-year effort to measure just what happens to those particles when placed in a stunningly precise magnetic field. The answer could rewrite scientists' picture of the universe and how it works.

Seven Small Businesses to Collaborate with Argonne to Solve Technical Challenges

Seven small businesses have been selected to collaborate with researchers at Argonne to address technical challenges as part of DOE's Small Business Vouchers Program.

JSA Names Charles Perdrisat and Charles Sinclair as Co-Recipients of its 2017 Outstanding Nuclear Physicist Prize

Jefferson Science Associates, LLC, announced today that Charles Perdrisat and Charles Sinclair are the recipients of the 2017 Outstanding Nuclear Physicist Prize. The 2017 JSA Outstanding Nuclear Physicist Award is jointly awarded to Charles Perdrisat for his pioneering implementation of the polarization transfer technique to determine proton elastic form factors, and to Charles Sinclair for his crucial development of polarized electron beam technology, which made such measurements, and many others, possible.


Filters:

Oxygen: The Jekyll and Hyde of Biofuels

Scientists are devising ways to protect plants, biofuels and, ultimately, the atmosphere itself from damage caused by an element that sustains life on earth.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.

New Perspectives Into Arctic Cloud Phases

Teamwork provides insight into complicated cloud processes that are important to potential environmental changes in the Arctic.

Mountaintop Plants and Soils to Become Out of Sync

Plants and soil microbes may be altered by climate warming at different rates and in different ways, meaning vital nutrient patterns could be misaligned.

If a Tree Falls in the Amazon

For the first time, scientists pinpointed how often storms topple trees, helping to predict how changes in Amazonia affect the world.

Turning Waste into Fuels, Microbial Style

A newly discovered metabolic process linking different bacteria in a community could enhance bioenergy production.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Electrifying Magnetism

Researchers create materials with controllable electrical and magnetic properties, even at room temperature.

One Step Closer to Practical Fast Charging Batteries

Novel electrode materials have designed pathways for electrons and ions during the charge/discharge cycle.


SLAC X-Ray Beam Helps Uncover Blueprint for Lassa Virus Vaccine

Article ID: 675777

Released: 2017-06-01 14:05:11

Source Newsroom: SLAC National Accelerator Laboratory

  • Credit: Ollmann Saphire Lab/The Scripps Research Institute

    The molecular structure of a Lassa virus protein provides the blueprints for vaccine design.

  • Credit: Kathryn Hastie/The Scripps Research Institute

    Erica Ollmann Saphire, professor of Immunology and Microbial Science at The Scripps Research Institute, during a visit of the Kenema Government Hospital, Sierra Leone, to study Lassa virus.

  • Credit: Ollmann Saphire Lab/The Scripps Research Institute

    An antibody from a human survivor (turquoise) is shown inactivating a Lassa virus surface protein.

Before Ebola virus ever struck West Africa, locals were continually on the lookout for another deadly pathogen: Lassa virus. With thousands dying from Lassa every year – and the potential for the virus to cause even larger outbreaks – researchers are committed to designing a vaccine to stop it.

Now a team of scientists from The Scripps Research Institute (TSRI) has solved the structure of the viral machinery that Lassa virus uses to enter human cells. X-ray beams from the Stanford Synchrotron Radiation Lightsource (SSRL) at the Department of Energy's SLAC National Accelerator Laboratory gave the team the final piece in a puzzle they sought to solve for over 10 years.

Their study, published today in Science, is the first to show a key piece of the viral structure, called the surface glycoprotein, for any member of the deadly arenavirus family, and the new structure provides a blueprint to design a Lassa virus vaccine.

“This was a tenacious effort – over a decade – to conquer a global threat,” said Erica Ollmann Saphire, a professor of Immunology and Microbial Science from TSRI and senior author of the new study.

X-ray data for this study was collected at SLAC and the DOE's Argonne National Laboratory. For the SLAC experiments, the researchers used a station at SSRL, a DOE Office of Science User Facility that has a strong program in biological X-ray crystallography. In this method, scientists prompt biological molecules to align and form a crystal, which they then study with powerful X-rays. The way the X-rays scatter off the crystal reveals the structure of the molecules inside – in 3-D and with atomic detail.

"I am proud of SSRL’s strong partnership with TSRI and our involvement in this project that utilized the bright X-ray microbeams and high level of automation at Beam Line 12-2 to obtain the necessary data," said SSRL senior staff scientist Aina Cohen. "This structure provides key information towards engineering an effective vaccine against Lassa, enabling the infected to combat the immunosuppressive traits of this virus, which is estimated to kill tens of thousands of people each year."  

It Started with a Thesis

The effort began with TSRI staff scientist Kathryn Hastie, the lead author of the study. In 2007, then a grad student in Ollmann Saphire's lab, she told her thesis committee she wanted to solve the structure of the assembled arenavirus glycoprotein, something never done before. She hoped to create a map of the target on the virus where antibodies need to attack – a key step in developing a vaccine.

Such maps can be obtained with X-ray crystallography, but the method depends on having a stable protein. Yet, all the Lassa virus glycoprotein wanted to do was fall apart.

The problem was that glycoproteins are made up of smaller subunits. Other viruses have bonds that hold the subunits together, “like a staple,” Hastie said. Arenaviruses don’t have that staple; instead, the subunits just floated away from each other whenever Hastie tried to work with them.

Another challenge was to recreate part of the viral lifecycle in the lab – a stage when Lassa’s glycoprotein gets clipped into two subunits. “We had to figure out how to get the subunits to be sufficiently clipped, which is necessary to make the biologically functional assembly, and also where to put an engineered staple to make sure they stayed together,” Hastie said.

Partnering with West Africa

As Hastie tackled those challenges from her lab bench in San Diego, staff at the Kenema Government Hospital in Sierra Leone labored on the front lines of the ongoing fight against Lassa.

Until the 2014–15 Ebola virus outbreak, Kenema was the only hospital in the world to have a special ward dedicated to treating hemorrhagic fever viruses. Staff at the clinic – from the nurses to the ambulance drivers – are all Lassa survivors, which gives them immunity to the disease. The TSRI scientists have a long-term collaboration with Kenema as part of a research program run by Tulane University that provided them with antibodies from survivors of Lassa fever. These antibodies could inactivate the virus, and they provided lifesaving protection to animal models. These were the kinds of antibodies researchers are hoping to elicit with a future Lassa virus vaccine.

In 2009, Hastie got to visit Kenema on a trip with Ollmann Saphire.

“I had been working on the project for two years with very little success at that point,” Hastie said. “Going to West Africa showed me how important it was to keep going.”

Like Ebola virus, Lassa fever starts with flu-like symptoms and can lead to debilitating vomiting, neurological problems and even hemorrhaging from the eyes, gums and nose. The disease is 50 to 70 percent fatal—and up to 90 percent fatal in pregnant women.

“Studying Lassa is critically important. Hundreds of thousands of people are infected with the virus every year, and it is the viral hemorrhagic fever that most frequently comes to the United States and Europe,” said Ollmann Saphire. “Kate’s study needed to be done.”

Tripod Shape Key to Future Vaccine Design

By creating mutant versions of important parts of the molecule, Hastie engineered a version of the Lassa virus surface glycoprotein that didn’t fall apart. She then used this model glycoprotein as a sort of magnet to find antibodies in patient samples that could bind with the glycoprotein to neutralize the virus.

With this latest study she solved the structure of the Lassa virus glycoprotein, bound to a neutralizing antibody from a human survivor.

Her structure showed that the glycoprotein has two parts. She compared the shape to an ice cream cone and a scoop of ice cream. A subunit called GP2 forms the cone, and the GP1 subunit sits on top. They work together when they encounter a host cell. GP1 binds to a host cell receptor, and GP2 starts the fusion process to enter that cell.

The new structure also showed a long structure hanging off the side of GP1—like a drip of melting ice cream running down the cone. This “drip” holds the two subunits together in their pre-fusion state.

Zooming in even closer, Hastie discovered that three of the GP1-GP2 pairs come together like a tripod. This arrangement appears to be unique to Lassa virus. Other viruses, such as influenza and HIV, also have three-part proteins (called trimers) at this site, but their subunits come together to form a pole, not a tripod. The structure is also important because it can be used as a model to conquer related viruses throughout the Americas, Europe and Africa for which no equivalent structure yet exists.

“It was great to see exactly how Lassa was different from other viruses,” said Hastie. “It was a tremendous relief to finally have the structure.”

This tripod arrangement offers a path for vaccine design. The scientists found that 90 percent of the effective antibodies in Lassa patients targeted the spot where the three GP subunits came together. These antibodies locked the subunits together, preventing the virus from gearing up to enter a host cell.

A future vaccine would likely have the greatest chance of success if it could trigger the body to produce antibodies to target the same site.

Ollmann Saphire explained that Hastie accomplished something unique in structural biology. “The research started from scratch with the native, wild-type viruses in patients in a remote clinic—and went all the way to developing a basis for vaccine design. And the work was done almost entirely by one woman.”

Moving Forward with a Lassa Vaccine

The next step is to test a vaccine that will prompt the immune system to target Lassa’s glycoprotein.

As director of the Viral Hemorrhagic Fever Immunotherapeutic Consortium, Ollmann Saphire is already coordinating with her partners at Tulane and Kenema to bring a vaccine to patients.

The Coalition for Epidemic Preparedness Innovations, an international collaboration that includes the Wellcome Trust and the World Health Organization as partners, has recently named a vaccine for Lassa virus as one of its three top priorities. “The community is keenly interested in making a Lassa vaccine, and we think we have the best template to do that,” said Ollmann Saphire.

She added that with Hastie’s techniques for solving arenavirus structures, researchers can now get a closer look at other hemorrhagic fever viruses, which cause death, neurological diseases and even birth defects around the world.

Ollmann Saphire added that beamlines such as 12-2 at SSRL, which provided the X-ray beam used to finally determine the Lassa virus glycoprotein structure, along with its recent detector upgrades, are essential for ongoing advances in structural biology.

"This research highlights the power of crystallographic techniques that rely on advanced synchrotron facilities to combat the most challenging biological problems. The support of the DOE's Office of Science Biological and Environmental Research, the National Institutes of Health and private institutions such as TSRI enables us to make these resources available to the wider biomedical community," Cohen said.

In addition to Ollmann Saphire and Hastie, the following authors contributed: Michelle A. Zandonatti of TSRI; James E. Robinson and Robert F. Garry of Tulane University; Lara M. Kleinfelter and Kartik Chandran of the Albert Einstein College of Medicine; and Megan L. Heinrich, Megan M. Rowland and Luis M. Branco of Zalgen Labs.

The study was supported by the National Institutes of Health and an Investigators in Pathogenesis of Infectious Diseases Award from the Burroughs Wellcome Fund. Research funding for the SSRL Structural Molecular Biology Program was provided by the DOE Office of Science and the National Institutes of Health, National Institute of General Medical Sciences.

This article is based on a press release by The Scripps Research Institute.

 


SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science. For more information, please visit slac.stanford.edu

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.