Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-06-20 13:05:00
  • Article ID: 676751

SLAC Experiment is First to Decipher Atomic Structure of an Intact Virus with an X-ray Laser

A ground-breaking experimental method developed by an international research team will substantially speed up protein analysis.

  • Credit: Jingshan Ren/University of Oxford

    Surface structure of the bovine enterovirus 2. The three virus proteins are color-coded.

  • Credit: Philip Roedig/DESY

    Micrograph of the microstructured chip, loaded with crystals for the investigation. Each square is a tiny crystal.

  • Credit: Philip Roedig/DESY

    Schematic of the experimental setup: The chip loaded with nanocrystals is scanned by the fine X-ray beam (green), pore by pore. Ideally, each crystal produces a distinctive diffraction pattern.

An international team of scientists has for the first time used an X-ray free-electron laser to unravel the structure of an intact virus particle on the atomic level. The method dramatically reduces the amount of virus material required, while also allowing the investigations to be carried out several times faster than before. This opens up entirely new research opportunities, as the research team led by Alke Meents, a scientist at Germany’s DESY lab, reports in the journal Nature Methods.

The researchers tested their method with the Linac Coherent Light Source (LCLS) X-ray free-electron laser at the Department of Energy’s SLAC National Accelerator Laboratory. Now they are working to increase the capacity and speed of the technique in anticipation of future experiments at the European XFEL X-ray free-electron laser, which is just going into operation near Hamburg, Germany.

“This is a much-welcome and important technological development that will greatly optimize data collection at LCLS and other X-ray free-electron lasers for certain classes of challenging experiments,” says co-author Roberto Alonso Mori, a staff scientist in the LCLS hard X-ray group. “The same technology could be used not only for biological science but could also help data collection in other areas.”

A Well-Rounded View of Life 

In the field known as structural biology, scientists examine the three-dimensional structure of biological molecules in order to work out how they function. This knowledge enhances our understanding of fundamental biological processes, such as the way substances are transported in and out of a cell, and can also inform drug development. 

“Knowing the three-dimensional structure of a molecule like a protein gives great insight into its biological behaviour,” explains co-author David Stuart, director of life sciences at the Diamond Light Source synchrotron facility in the United Kingdom and a professor at the University of Oxford. “One example is how understanding the structure of a protein that a virus uses to ‘hook’ onto a cell could mean that we’re able to design a defense for the cell to make the virus incapable of attacking it.”

X-ray crystallography is by far the most prolific tool used by structural biologists and has already been used to determine the structure of thousands of biological molecules. Tiny crystals of the protein of interest are grown, and then illuminated using high-energy X-rays. The crystals diffract the X-rays in characteristic ways so that the resulting diffraction patterns can be used to deduce the spatial structure of the crystal – and hence of its components – on the atomic scale. However, protein crystals are nowhere near as stable and sturdy as salt crystals, for example. They are difficult to grow, often remaining tiny, and are easily damaged by the X-rays.

“X-ray lasers have opened up a new path to protein crystallography, because their extremely intense pulses can be used to analyse even extremely tiny crystals that would not produce a sufficiently bright diffraction image using other X-ray sources,” says co-author Armin Wagner from Diamond Light Source. However, each of these microcrystals can only produce a single diffraction image before it evaporates as a result of the X-ray pulse. To perform the structural analysis, though, hundreds or even thousands of diffraction images are needed. In such experiments, scientists therefore inject a fine liquid jet of protein crystals through an X-ray laser beam that pulses in a rapid sequence of extremely short bursts. Each time an X-ray pulse happens to strike a microcrystal, a diffraction image is produced and recorded.

This method is very successful and has already been used to determine the structure of more than 80 biomolecules, the researchers point out in their paper. However, most of the sample material is wasted. “The hit rate is typically less than 2 percent of pulses, so most of the precious microcrystals end up unused in the collection container,” says Meents, who is based at the Center for Free-Electron Laser Science (CFEL) in Hamburg, a cooperation of DESY, the University of Hamburg and the German Max Planck Society. The standard method therefore typically requires several hours of beam time and significant amounts of sample material.

Protein Crystals on a Chip

In order to use the limited beam time and the precious sample material more efficiently, the team developed a new method. The scientists use a micro-patterned chip containing thousands of tiny pores to hold the protein crystals. The X-ray laser then scans the chip line by line, and ideally this allows a diffraction image to be recorded for each pulse of the laser.

The research team tested its method on two virus samples using SLAC’s LCLS X-ray laser, which produces 120 pulses per second. They loaded their sample holder with a small amount of microcrystals of the bovine enterovirus 2 (BEV2), a virus that causes miscarriages, stillbirths and infertility in cattle, and which is very difficult to crystallise.

In this experiment, the scientists achieved a hit rate – where the X-ray laser successfully targeted the crystal – of up to 9 percent, five times the hit rate of the previous method. Within just 14 minutes they had collected enough data to determine the correct structure of the virus – which was already known from other experiments – down to a scale of 2.3 angstroms. 

“To the best of our knowledge, this is the first time the atomic structure of an intact virus particle has been determined using an X-ray laser,” Meents says. “Whereas earlier methods at other X-ray light sources required crystals with a total volume of 3.5 nanoliters, or billionths of a liter, we managed using crystals that were more than 10 times smaller, having a total volume of just 0.23 nanoliters.”

This experiment was conducted at room temperature; while rapidly cooling the protein crystals would protect them to some extent from radiation damage, this is not generally feasible when working with extremely sensitive virus crystals. Crystals of isolated virus proteins can, however, be frozen and in a second test, the researchers studied a viral protein called polyhedrin that makes up a viral occlusion body -- a container used by certain virus species to protect up to several thousand virus particles at a time against environmental influences so they can remain intact much longer.

From Room Temperature to a Deep Chill

For the second test, the scientist loaded their chip with polyhedrin crystals and examined them using the X-ray laser while keeping the chip at temperatures below minus 180 degrees Celsius. Here, the scientists achieved a hit rate of up to 90 percent. In just 10 minutes they recorded more than enough diffraction images to determine the protein structure to within 2.4 angstroms.

“For the structure of polyhedrin, we only had to scan a single chip that was loaded with four micrograms of protein crystals; that is orders of magnitude less than the amount that would normally be needed,” explains Meents.

“Our approach not only reduces the data collection time and the quantity of the sample needed, it also opens up the opportunity of analysing entire viruses using X-ray lasers,” Meents sums up. The scientists now want to increase the capacity of their chip by a factor of ten, from 22,500 to some 200,000 micropores, and further increase the scanning speed to up to one thousand samples per second. This would better exploit the potential of the European XFEL, which will be able to produce up to 27,000 X-ray laser pulses per second, as well as an upgraded LCLS that is scheduled to come on line in the early 2020s and produce up to a million pulses per second. Furthermore, the next generation of chips will expose only those micropores that are targeted for analysis, to prevent the remaining crystals from being damaged by scattered radiation from the X-ray laser.

Diamond scientists have collaborated with the team at DESY, with much of the development and testing of the micro-patterned chip being on Diamond’s I02 and I24 beamlines. Researchers from the University of Oxford, the University of Eastern Finland, the Swiss Paul Scherrer Institute, Lawrence Berkeley National Laboratory and SLAC were also involved in the research. LCLS is a DOE Office of Science User Facility.

This article is based on a DESY press release.

 


SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science. For more information, please visit slac.stanford.edu.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

X
X
X
  • Filters

  • × Clear Filters

A New Optimization Model Could Bring Higher Solar-Power Integration

With numerous installations of solar power systems for residential homes at or near the distribution site, there is a challenge to balance supply and demand to make these intermittent energy sources reliable. Demand response is one promising way to increase operational flexibility and energy efficiency, and researchers in Malaysia have incorporated DR scenarios in case studies based on 100 urban low-voltage network samples to learn more. They report their findings in this week's Journal of Renewable and Sustainable Energy.

Making Polymer Chemistry 'Click'

A team including Berkeley Lab scientists has developed a faster and easier way to make a class of sulfur-containing plastics that will lower the cost of large-scale production.

Imaging Technology Reveals Copper Is Key to Meeting Future Food and Energy Needs

For the first time, Cornell University researchers are using imaging capabilities at the Cornell High Energy Synchrotron Source (CHESS) to explore how copper affects plant fertility. The work could provide key insights into how plants can be bred for better performance in marginal soils.

PPPL Researchers Perform First Basic Physics Simulation of the Impact of Recycled Atoms on Plasma Turbulence

Article describes simulation of impact of recycled atoms on plasma turbulence.

"Hindcasting" Study Investigates the Extreme 2013 Colorado Flood

Using a publicly available climate model, Berkeley Lab researchers "hindcast" the conditions that led to the Sept. 9-16, 2013 flooding around Boulder, Colo. and found that climate change attributed to human activity made the storm much more severe than would otherwise have occurred.

Ultrathin Device Harvests Electricity From Human Motion

Imagine slipping into a jacket, shirt or skirt that powers your cell phone, fitness tracker and other personal electronic devices as you walk, wave and even when you are sitting down. A new, ultrathin energy harvesting system developed at Vanderbilt University's Nanomaterials and Energy Devices Laboratory has the potential to do just that.

Energy-Efficient Accelerator Was 50 Years in the Making

With the introduction of CBETA, the Cornell-Brookhaven ERL Test Accelerator, Cornell University and Brookhaven National Laboratory scientists are following up on the concept of energy-recovering particle accelerators first introduced by physicist Maury Tigner at Cornell more than 50 years ago.

Scientists Program Yeast to Turn Plant Sugars into Biodiesel

Redox metabolism was engineered in Yarrowia lipolytica to increase the availability of reducing molecules needed for lipid production.

Soils Could Release Much More Carbon than Expected as Climate Warms

Deeper soil layers are more sensitive to warming than previously thought.

3-D Models Help Scientists Gauge Flood Impact

Using one of the world's most powerful supercomputers--Titan, the 27-petaflop Cray XK7 at the Oak Ridge Leadership Computing Facility (OLCF)--a University of Iowa team performed one of the first highly resolved, 3-D, volume-of-fluid Reynolds-averaged Navier-Stokes (RANS) simulations of a dam break in a natural environment. The simulation allowed the team to map precise water levels for actual flood events over time.


  • Filters

  • × Clear Filters

DOE User Facilities Join Forces to Tackle Biology's Big Data

Through the "Facilities Integrating Collaborations for User Science" (FICUS) initiative, 6 proposals have been selected to participate in a new partnership between the DOE Joint Genome Institute and the National Energy Research Scientific Computing Center, both U.S. Department of Energy user facilities at Lawrence Berkeley National Laboratory.

Qubitekk Licenses ORNL Single-Photon Source Approach for Quantum Encryption

Qubitekk has non-exclusively licensed an Oak Ridge National Laboratory-developed method to produce quantum light particles, known as photons, in a controlled, deterministic manner that promises improved speed and security when sharing encrypted data.

Construction of Massive Neutrino Experiment Kicks Off a Mile Underground

A new era in international particle physics research officially began July 21 with a unique groundbreaking held a mile underground at the Sanford Underground Research Facility in South Dakota. Dignitaries, scientists and engineers from around the world marked the start of construction of a massive international experiment that could change our understanding of the universe. The Long-Baseline Neutrino Facility (LBNF) will house the international Deep Underground Neutrino Experiment (DUNE), which will be built and operated by roughly 1,000 scientists and engineers from 30 countries.

Construction Begins on International Mega-Science Experiment to Understand Neutrinos

In a unique groundbreaking ceremony held this afternoon at the Sanford Underground Research Facility in Lead, South Dakota, a group of dignitaries, scientists and engineers from around the world marked the start of construction of a massive international experiment that could change our understanding of the universe. The Long-Baseline Neutrino Facility (LBNF) will house the international Deep Underground Neutrino Experiment (DUNE), which will be built and operated by a group of roughly 1,000 scientists and engineers from 30 countries.

Buchanan Named Deputy for Science and Technology at Oak Ridge National Laboratory

Michelle Buchanan, an accomplished scientific leader and researcher, has been appointed Deputy for Science and Technology at the Department of Energy's Oak Ridge National Laboratory by new Lab Director Thomas Zacharia.

Neutrino Project to Fuel Particle Physics Research

Over the next decade, 800,000 tons of rock will be excavated from the former Homestake Mine in Lead, South Dakota, to accommodate a particle detector filled with 70,000 tons of liquid argon cooled to -300 degrees Fahrenheit to study neutrinos beamed from Fermilab in Illinois. It's called the Deep Underground Neutrino Experiment.

Berkeley Lab to Lead Multimillion-Dollar Geothermal Energy Project

The Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) will lead a new $9 million project aimed at removing technical barriers to commercialization of enhanced geothermal systems (EGS), a clean energy technology with the potential to power 100 million American homes.

PNNL Scientist Ruby Leung Appointed a Battelle Fellow

Ruby Leung of the Department of Energy's Pacific Northwest National Laboratory has been named a Battelle Fellow -- the highest recognition from Battelle for leadership and accomplishment in science. She is one of eight Battelle fellows at PNNL.

Gu and Paranthaman Named ORNL Corporate Fellows

Researchers Baohua Gu and Parans Paranthaman have been named Corporate Fellows of the Department of Energy's Oak Ridge National Laboratory.

DOE Funds Center for Bioenergy Innovation at ORNL to Accelerate Biofuels, Bioproducts Research

The DOE has announced funding for new research centers to accelerate the development of specialty plants and processes for a new generation of biofuels and bioproducts.


  • Filters

  • × Clear Filters

Quantum Computing Building Blocks

Scientists invented an approach to creating ordered patterns of nitrogen-vacancy centers in diamonds, a promising approach to storing and computing quantum data.

Scientists Program Yeast to Turn Plant Sugars into Biodiesel

Redox metabolism was engineered in Yarrowia lipolytica to increase the availability of reducing molecules needed for lipid production.

Soils Could Release Much More Carbon than Expected as Climate Warms

Deeper soil layers are more sensitive to warming than previously thought.

Weaving a Fermented Path to Nylons

Microbial enzymes create precursors of nylon while avoiding harsh chemicals and energy-demanding heat.

Loosening of Lignocellulose: Switchgrass and Success in Sugar Release

Using a genetically modified line of switchgrass, scientists reduced plant cell wall recalcitrance while increasing sugar release over three generations.

Extending the Life of Lithium-Ion Batteries

Scientists offer new insights into how the source of electrons in batteries fails.

Unraveling the Molecular Complexity of Cellular Machines and Environmental Processes

State-of-the-art mass spectrometer delivers unprecedented capability to scientists.

Speeding Up Catalysts for Energy Storage

Researchers develop the fastest synthetic catalyst for producing hydrogen gas, potentially leading to a new environmentally friendly, affordable fuel.

Watching Neutrons Flow

Like water, neutrons seek their own level, and watching how they flow may teach us about how the chemical elements were made.

FIONA to Take on the Periodic Table's Heavyweights

FIONA (For the Identification Of Nuclide A) is a newly installed device designed to measure the mass numbers of individual atoms of heavy and superheavy elements. FIONA will let researchers learn about the shape and structure of heavy nuclei, guide the search for new elements, and offer better measurements for nuclear fission and related processes.


Spotlight

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park





Showing results

0-4 Of 2215