Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-07-24 17:05:29
  • Article ID: 678363

Atomic Movies May Help Explain Why Perovskite Solar Cells Are More Efficient

SLAC's Ultrafast 'Electron Camera' Captures Surprising Atomic Motions in these Next-Generation Materials

  • Credit: SLAC National Accelerator Laboratory

    According to a new SLAC study, atoms in perovskites respond to light with unusual rotational motions and distortions that could explain the high efficiency of these next-generation solar cell materials.

  • Credit: SLAC National Accelerator Laboratory

    Light separates electric charges in a solar cell material by displacing negatively charged electrons. This also creates electron deficiencies, called “electron holes,” with a positive charge. Electrons and holes migrate to opposite sides of the material, generating a voltage for electrical appliances.

  • Credit: SLAC National Accelerator Laboratory

    Illustration of the ultrafast electron diffraction (UED) experiment used to capture the rapid atomic response to light in perovskites. An electron beam (blue) is deflected as it passes through the perovskite sample, generating an intensity or diffraction pattern on a detector that allows the reconstruction of the sample’s atomic structure. By measuring how the pattern changes over time after the sample was hit by a laser pulse (red), researchers can create an ultrafast movie of the atomic response.

  • Credit: Te Hu/Xiaoxi Wu/SLAC National Accelerator Laboratory

    At left: The SLAC study looked at atomic motions in a perovskite solar cell material made of lead (black spheres), iodine (purple) and methylammonium (red and blue). The atomic arrangement is typical for all perovskites, named after a naturally occurring mineral of titanium, oxygen and calcium. At right: Scanning electron microscope image of a thin perovskite film used in the study, showing grains of the material with a size of 50 to 100 nanometers.

  • Credit: SLAC National Accelerator Laboratory

    Iodine atoms, which surround lead atoms in a perovskite solar cell material studied at SLAC, respond to light in a surprising manner: Within 10 trillionths of a second after a light pulse, iodine atoms rotate around every lead atom as if they are moving on the surface of a sphere with the lead atom at the center. These motions could potentially explain the material’s high efficiency in converting light into electricity.

  • Credit: SLAC National Accelerator Laboratory

    From left: SLAC researchers Xijie Wang, Aaron Lindenberg and Xiaoxi Wu at the lab’s experimental station for ultrafast electron diffraction (UED).

In recent years, perovskites have taken the solar cell industry by storm. They are cheap, easy to produce and very flexible in their applications. Their efficiency at converting light into electricity has grown faster than that of any other material – from under four percent in 2009 to over 20 percent in 2017 – and some experts believe that perovskites could eventually outperform the most common solar cell material, silicon. But despite their popularity, researchers don’t know why perovskites are so efficient.

 Now experiments with a powerful “electron camera” at the Department of Energy’s SLAC National Accelerator Laboratory have discovered that light whirls atoms around in perovskites, potentially explaining the high efficiency of these next-generation solar cell materials and providing clues for making better ones.

“We’ve taken a step toward solving the mystery,” said Aaron Lindenberg from the Stanford Institute for Materials and Energy Sciences (SIMES) and the Stanford PULSE Institute for ultrafast science, which are jointly operated by Stanford University and SLAC. “We recorded movies that show that certain atoms in a perovskite respond to light within trillionths of a second in a very unusual manner. This may facilitate the transport of electric charges through the material and boost its efficiency.”

The study was published today in Science Advances.

Light Sets Atomic Structure in Motion 

When light shines on a solar cell material, its energy displaces some of the material’s negatively charged electrons. This leaves behind “electron holes” with a positive charge where the electrons were originally located. Electrons and holes migrate to opposite sides of the material, creating a voltage that can be used to power electrical devices.

A solar cell’s efficiency depends on how freely electrons and holes can move in the material. Their mobility, in turn, depends on the material’s atomic structure. In silicon solar cells, for example, silicon atoms line up in a very orderly fashion inside crystals, and even the smallest structural defects reduce the material’s ability to efficiently harvest light. 

As a result, silicon crystals must be grown in costly, multistep procedures under extremely clean conditions. In contrast, “Perovskites are readily produced by mixing chemicals into a solvent, which evaporates to leave a very thin film of perovskite material,” said Xiaoxi Wu, the study’s lead author from SIMES at SLAC. “Simpler processing means lower costs. Unlike silicon solar cells, perovskite thin films are also lightweight and flexible and can be easily applied to virtually any surface.”

But what exactly is it about perovskites that allows some of them to harvest light very efficiently? Scientists think that one of the keys is how their atoms move in response to light.

To find out more, Wu and her colleagues studied these motions in a prototype material made of iodine, lead and an organic molecule called methylammonium. The iodine atoms are arranged in octohedra – eight-sided structures that look like two pyramids joined at their bases. The lead atoms sit inside the octohedra and the methylammonium molecules sit between octohedra (see diagram below). This architecture is common to many of the perovskites investigated for solar cell applications.

“Previous studies have mostly explored the role of the methylammonium ions and their motions in transporting electric charge through the material,” Wu said. “However, we’ve discovered that light causes large deformations in the network of lead and iodine atoms that could be crucial for the efficiency of perovskites.”     

Unusual Distortions May Enhance Efficiency   

At SLAC’s Accelerator Structure Test Area (ASTA), the researchers first hit a perovskite film, less than two millionths of an inch thick, with a 40-femtosecond laser pulse. One femtosecond is a millionth of a billionth of a second. To determine the atomic response, they sent a 300-femtosecond pulse of highly energetic electrons through the material and observed how the electrons were deflected in the film. This technique, called ultrafast electron diffraction (UED), allowed them to reconstruct the atomic structure.

“By repeating the experiment with different time delays between the two pulses, we obtained a stop-motion movie of the lead and iodine atoms’ motions after the light hit,” said co-author Xijie Wang, SLAC’s lead scientist for UED. “The method is similar to taking a series of ultrafast X-ray snapshots, but electrons give us much stronger signals for thin samples and are less destructive.”   

The team expected that the light pulse would affect atoms evenly in all directions, causing them to jiggle around their original positions.

“But that’s not what happened,” Lindenberg said. “Within 10 trillionths of a second after the laser pulse, the iodine atoms rotated around each lead atom as if they were moving on the surface of a sphere with the lead atom at the center, switching each octahedron from a regular shape to a distorted one.”

The surprising deformations were long-lived and unexpectedly large, similar in size to those observed in melting crystals. 

“This motion could alter the way charges move,” Wu said. “This response to light could enhance efficiency, for instance by allowing electric charges to migrate through defects and protecting them from being trapped in the material.”

“The results from the Lindenberg group provide fascinating first-time insights into the properties of hybrid perovskites using ultrafast electron diffraction as a unique tool,” according to Felix Deschler, an expert in the field of light-induced physics of novel materials and a researcher at Cambridge University’s Cavendish Lab.

“Knowledge about the detailed atomic motion after photoexcitation yields new information about their performance and can provide new guidelines for material development.”

This work was funded by the DOE Office of Science through SIMES.  Other contributors came from the University of Pennsylvania, Columbia University and the Weizmann Institute of Science in Israel.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. To learn more, please visit www.slac.stanford.edu.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

X
X
X
  • Filters

  • × Clear Filters

Discovered: A Quick and Easy Way to Shut Down Instabilities in Fusion Devices

Article describes use of second neutral beam injector to suppress instabilities on the NSTX-U

Researchers Create Molecular Movie of Virus Preparing to Infect Healthy Cells

A research team has created for the first time a movie with nanoscale resolution of the three-dimensional changes a virus undergoes as it prepares to infect a healthy cell. The scientists analyzed thousands of individual snapshots from intense X-ray flashes, capturing the process in an experiment at the Department of Energy's SLAC National Accelerator Laboratory.

Nanotechnology Gives Green Energy a Green Color

Solar panels have tremendous potential to provide affordable renewable energy, but many people see traditional black and blue panels as an eyesore. Architects, homeowners and city planners may be more open to the technology if they could install colorful, efficient solar panels, and a new study, published this week in Applied Physics Letters, brings us one step closer. Researchers have developed a method for imprinting existing solar panels with silicon nanopatterns that scatter green light back toward an observer.

New 3-D Simulations Show How Galactic Centers Cool Their Jets

Scientists at Berkeley Lab and Purdue University developed new theories and 3-D simulations to explain what's at work in the mysterious jets of energy and matter beaming from the center of galaxies at nearly the speed of light.

Are Your Tweets Feeling Well?

Study finds opinion and emotion in tweets change when you get sick, a method public health workers could use to track health trends.

"Getting to 80%" on Energy Cutbacks Cannot Occur Unless Behaviors Change

California's plan to cut energy consumption by 80 percent by 2050 cannot be achieved with current proposed policy changes because most solutions focus on changing technologies rather than changing behavior, a new UC Davis study suggests.

New Battery Material Goes with the Flow

Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have engineered a new material to be used in redox flow batteries, which are particularly useful for storing electricity for the grid. The material consists of carefully structured molecules designed to be particularly electrochemically stable in order to prevent the battery from losing energy to unwanted reactions.

Simulation Demonstrates How Exposure to Plasma Makes Carbon Nanotubes Grow

PPPL research performed with collaborators from Princeton University and the Institute for Advanced Computational Science at the State University of New York at Stony Brook has shown how plasma causes exceptionally strong, microscopic structures known as carbon nanotubes to grow.

Night Vision for Bird- & Bat-Friendly Offshore Wind Power

The ThermalTracker software analyzes video with night vision, the same technology that helps soldiers see in the dark, to help birds and bats near offshore wind turbines.

Drone Tech Offers New Ways to Manage Climate Change

An innovation providing key clues to how humans might manage forests and cities to cool the planet is taking flight. Cornell researchers are using drone technology to more accurately measure surface reflectivity on the landscape, a technological advance that could offer a new way to manage climate change.


  • Filters

  • × Clear Filters

Kathryn Hastie Wins Spicer Award for Lassa Virus Work at SLAC's X-Ray Synchrotron

Kathryn Hastie, staff scientist at The Scripps Research Institute, has spent the last decade studying how the deadly Lassa virus - which causes up to half a million cases of Lassa fever each year in West Africa - enters human cells via a cell surface receptor.

Southern Research to Play Key Role in Low Cost Carbon Fiber Project

Southern Research's Energy & Environment division (E&E) will participate as a subcontractor to WRI to provide renewable acrylonitrile -- the key raw material needed to produce the highest quality carbon fibers -- produced from biomass-derived second generation sugars.

Newly Upgraded Laser Allows Scientists to Peer Further Into the Extreme Universe at SLAC's LCLS

Scientists at the Department of Energy's SLAC National Accelerator Laboratory recently upgraded a powerful optical laser system used to create shockwaves that generate high-pressure conditions like those found within planetary interiors. The laser system now delivers three times more energy for experiments with SLAC's ultrabright X-ray laser, providing a more powerful tool for probing extreme states of matter in our universe.

Three Brookhaven Lab Scientists Selected to Receive Early Career Research Program Funding

Three scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have been selected by DOE's Office of Science to receive significant research funding through its Early Career Research Program.

Upcoming 232nd ECS Meeting to Feature International Energy Summit, Nobel Laureate Lecture

The 232nd ECS Meeting will include 49 topical symposia and over 2,300 technical presentations, including the 7th International Electrochemical Energy Summit, the Society's inaugural OpenCon and Hack Day events, and plenary lecture delivered by former U.S. Secretary of Energy and Nobel Prize Laureate Steven Chu.

PNNL Scientist Jiwen Fan Receives DOE Early Career Research Award

Jiwen Fan of the Department of Energy's Pacific Northwest National Laboratory has been selected to receive a 2017 Early Career Research Program award from the U.S. Department of Energy. Fan will use the award to study severe thunderstorms in the central United States - storms that produce large hail, damaging winds, tornadoes, and torrential rainfall.

Three SLAC Scientists Receive DOE Early Career Research Grants

Three scientists at the Department of Energy's SLAC National Accelerator Laboratory will receive DOE Early Career Research Program grants for research to find evidence of cosmic inflation, understand how plasmas excite particles to high energies and develop a way to accelerate particles in much shorter distances with terahertz radiation.

Four ORNL Researchers Receive DOE Early Career Funding Awards

Four Oak Ridge National Laboratory researchers specializing in nuclear physics, fusion energy, advanced materials and environmental science are among 59 recipients of Department of Energy's Office of Science Early Career Research Program awards.

Missouri S&T Professor Earns Patent for Energy Storage Technology

ceramic engineering professor at Missouri University of Science and Technology has received a federal patent for his latest innovation, a multi-layer ceramic capacitor that could help boost energy storage in applications ranging from pulse power devices to military hardware.

James Peery Named Chief Scientist of the Global Security Directorate at Oak Ridge National Laboratory

James Peery, who has led critical national security programs at Sandia National Laboratories and Los Alamos National Laboratory, has been selected as the chief scientist of the Global Security Directorate at Oak Ridge National Laboratory.


  • Filters

  • × Clear Filters

Creating a Molecular Super Sponge, From the Ground Up

A new uranium-based metal-organic framework, NU-1301, could aid energy producers and industry.

Physicists Move Closer to Listening in on Sub-Atomic Conversation

Calculations of a subatomic particle called the sigma provide insight into the communication between subatomic particles deep inside the heart of matter.

Meet the Director: Chuck Black

This is a continuing profile series on the directors of the Department of Energy (DOE) Office of Science User Facilities. These scientists lead a variety of research institutions that provide researchers with the most advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nano world, the environment, and the atmosphere.

Making an Ultra-small Silicon "Chip"

A new polymer, created with a structure inspired by crystalline silicon, may make it easier to build better computers and solar cells.

How to Keep a Vital Diagnostic Isotope in Stock

Researchers succeed in producing larger quantities of a long-lived radioisotope, titanium-44, that generates a needed isotope, scandium-44g, on demand.

When Strontium Is Away, Iridium Comes Out to Play

Developing a highly active and acid-stable catalyst for water splitting could significantly impact solar energy technologies.

On Track Towards a Zika Virus Vaccine

Antibody's molecular structure reveals how it recognizes the Zika virus

Quantum Computing Building Blocks

Scientists invented an approach to creating ordered patterns of nitrogen-vacancy centers in diamonds, a promising approach to storing and computing quantum data.

Scientists Program Yeast to Turn Plant Sugars into Biodiesel

Redox metabolism was engineered in Yarrowia lipolytica to increase the availability of reducing molecules needed for lipid production.

Soils Could Release Much More Carbon than Expected as Climate Warms

Deeper soil layers are more sensitive to warming than previously thought.


Spotlight

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park





Showing results

0-4 Of 2215