Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-09-18 13:05:59
  • Article ID: 681282

Let There Be (Connected) Light

New Connected Lighting Test Bed advancing smart, adaptive lighting

  • Credit: Andrea Starr/Pacific Northwest National Laboratory

    Pacific Northwest National Laboratory researchers at the Connected Lighting Test Bed study and advance smart and energy-efficient connected lighting systems. PNNL lighting engineer Michael Poplawski is shown here with connected outdoor streetlights.

  • Credit: Andrea Starr/Pacific Northwest National Laboratory

    Pacific Northwest National Laboratory researchers at the Connected Lighting Test Bed study and advance smart and energy-efficient connected lighting systems. PNNL researcher Clement Gaidon is shown here with the drop-down ceiling used to test indoor connected lights.

PORTLAND, Ore. — Long gone are the days when light bulbs simply shine in the darkness.

Now they can also report their own energy usage, get brighter when people walk by, and even tell you when the conference room is available at work. Light-emitting diodes, also known as LEDs, interact with sensors, microcomputers and other components to offer a long list of potential applications as part of an emerging field called connected lighting.

A new research facility has been established in Portland, Ore. to study and advance these smart, energy-efficient lighting systems. Managed by Pacific Northwest National Laboratory for the Department of Energy, the Connected Lighting Test Bed is a large warehouse space filled with a variety of lights, cables, controllers and computers. PNNL staff there conduct independent research to better understand and improve new connected lighting systems.

"Connected lighting has huge potential to improve lighting quality, save energy and provide new services," said Michael Poplawski, a PNNL engineer who manages the test bed. "But the convergence of LEDs and networking capabilities makes for a complex technology landscape. That's where we can help."

Lighting and networking engineers at the Connected Lighting Test Bed conduct research to ensure the burgeoning technology meets the needs of the nation's biggest lighting consumers: commercial users such as hotel chains and big box stores. Because commercial buildings use nearly 20 percent of the energy consumed in the U.S., installing connected lighting systems in these large buildings could result in significant nationwide energy savings.

Study results from the test bed are publically available online, which helps speed the learning curve for lighting manufacturers, building owners and other potential connected lighting users. Manufacturers, on the other hand, typically keep test results of their products private and don't always use uniform test methods. The independent data collected at this facility provides timely feedback to manufacturers, technology developers and industry standards organizations.

Poplawski and his colleagues evaluate connected lighting systems that are either already on the market or still under development. To test indoor lights, the group uses a drop-down ceiling that can be raised and lowered with the flip of a switch so staff can easily swap out components and change circuits. They have also wall-mounted connected outdoor streetlights that are equipped with sensors and controls.

PNNL staff select specific technologies to evaluate at the facility based on each system's potential to measure energy use, communicate with other systems and provide other services beyond lighting — including inventory control at warehouses or remembering a worker's preferred office temperature.

The test bed's primary goal is to evaluate energy use in connected lighting systems. For traditional lighting technologies, such as incandescent and fluorescent bulbs, it's straightforward to assess energy consumption. But LEDs have many potential modes and settings — including different colors, dimming and light temperatures that vary from daylight to soft white. So it is challenging to estimate how much energy they use.

The networked nature of connected lighting systems means they should be able to report their own energy usage. There's a catch, though: How connected lighting energy data is collected, formatted and retrieved is not standardized. To alleviate this issue, test bed researchers are developing reliable methods to evaluate connected lighting systems' ability to accurately report their own energy consumption.

An example of this research area is a February 2017 PNNL report for DOE on energy reporting by LEDs with Power over Ethernet systems, which use Ethernet cables to provide both network communications and low-voltage power.

PNNL is also interested in how well the individual components in any given system communicate with each other and with other systems, a feature called interoperability. It's difficult to buy all the components of a connected lighting system from one manufacturer. So it's important for all parts to talk with each other, regardless of who made them.

"How can you test how well these are communicating? That's much fuzzier," Poplawski said. "Just think about two human beings trying to talk together. Do they understand what the other is trying to say?"

To test for interoperability, the team has developed a series of scenarios that require effective communication between components. The researchers ask lighting systems to complete a task, such as dim the output of their lights or report on how much energy they used in an hour. Then the scientists evaluate how easy it was to complete the task, what the responses looked like, and how well the components worked together to achieve the result. From there, they can start to characterize system features and capabilities in terms of how well they facilitate interoperability.

Poplawski and his team are also investigating cybersecurity risks in connected lighting systems. As with any networked equipment, this technology is potentially at risk for cyberattacks. And, as the number of connected devices throughout our homes and buildings grows exponentially, such cyberrisks could increase. PNNL is developing methods to evaluate cybersecurity risk for connected lighting systems in collaboration with the Industrial Internet Consortium and Underwriters Laboratories.

PNNL's test bed currently focuses on how systems perform under the same, carefully controlled conditions inside the facility. Such small-scale tests will help Poplawski and his colleagues better understand the details of connected lighting. They may later progress to field studies that would test connected lighting at hotels, grocery stores or other real-world locations.

Reports based on studies conducted at the Connected Lighting Test Bed can be found on DOE's Solid-State Lighting website. Those interested in partnering with PNNL in its connected lighting research can contact Michael Poplawski. PNNL's connected lighting research at the Connected Lighting Test Bed is supported by DOE's Office of Energy Efficiency and Renewable Energy.

X
X
X
  • Filters

  • × Clear Filters

Lawrence Livermore Issues Combined State-by-State Energy and Water Use Flow Charts

For the first time, Lawrence Livermore National Laboratory (LLNL) has issued state-by-state energy and water flow charts in one location so that analysts and policymakers can find all the information they need in one place.

Battery's Hidden Layer Revealed

An international team led by Argonne National Laboratory makes breakthrough in understanding the chemistry of the microscopically thin layer that forms between the liquid electrolyte and solid electrode in lithium-ion batteries. The results are being used in improving the layer and better predicting battery lifetime.

Ramp Compression of Iron Provides Insight into Core Conditions of Large Rocky Exoplanets

A team of researchers from Lawrence Livermore National Laboratory (LLNL), Princeton University, Johns Hopkins University and the University of Rochester have provided the first experimentally based mass-radius relationship for a hypothetical pure iron planet at super-Earth core conditions. This discovery can be used to evaluate plausible compositional space for large, rocky exoplanets, forming the basis of future planetary interior models, which in turn can be used to more accurately interpret observation data from the Kepler space mission and aid in identifying planets suitable for habitability.

Getting Magnesium Ions to Pick Up the Pace

Magnesium ions move very fast to enable a new class of battery materials.

Valleytronics Discovery Could Extend Limits of Moore's Law

Research appearing today in Nature Communications finds useful new information-handling potential in samples of tin(II) sulfide (SnS), a candidate "valleytronics" transistor material that might one day enable chipmakers to pack more computing power onto microchips. 

Scientists Use Machine Learning to Speed Discovery of Metallic Glass

SLAC and its collaborators are transforming the way new materials are discovered. In a new report, they combine artificial intelligence and accelerated experiments to discover potential alternatives to steel in a fraction of the time.

Seeing How Next-Generation Batteries Power-Up

Scientists directly see how the atoms in a magnesium-based battery fit into the structure of electrodes.

A Heavyweight Solution for Lighter-Weight Combat Vehicles

Researchers at Pacific Northwest National Laboratory have developed and successfully tested a novel process - called Friction Stir Dovetailing - that joins thick plates of aluminum to steel. The new process will be used to make lighter-weight military vehicles that are more agile and fuel efficient.

How to Turn Light Into Atomic Vibrations

Converting laser light into nuclear vibrations is key to switching a material's properties on and off for future electronics.

Could Holey Silicon Be the Holy Grail of Electronics?

Electronics miniaturization has put high-powered computing capability into the hands of ordinary people, but the ongoing downsizing of integrated circuits is challenging engineers to come up with new ways to thwart component overheating.


  • Filters

  • × Clear Filters

Argonne Selects Innovators From Across Nation to Grow Startups

Argonne announces second cohort of Chain Reaction Innovations.

Brookhaven Lab Materials Physicist Yimei Zhu Receives 2018 Distinguished Scientist Award from the Microscopy Society of America

How do complex atomic and electronic interactions impact material properties? Using electron microscopy instrumentation and methods he developed, Yimei Zhu has been investigating this question for the past 30 years. The Microscopy Society of America is now recognizing his contributions.

SLAC Produces First Electron Beam with Superconducting Electron Gun

Accelerator scientists at the Department of Energy's SLAC National Accelerator Laboratory are testing a new type of electron gun for a future generation of instruments that take snapshots of the atomic world in never-before-seen quality and detail, with applications in chemistry, biology, energy and materials science.

U.S., India Sign Agreement Providing for Neutrino Physics Collaboration at Fermilab and in India

Earlier today, April 16, 2018, U.S. Secretary of Energy Rick Perry and India's Atomic Energy Secretary Dr. Sekhar Basu signed an agreement in New Delhi to expand the two countries' collaboration on world-leading science and technology projects. It opens the way for jointly advancing cutting-edge neutrino science projects under way in both countries: the Long-Baseline Neutrino Facility (LBNF) with the international Deep Underground Neutrino Experiment (DUNE) hosted at the U.S. Department of Energy's Fermilab and the India-based Neutrino Observatory (INO).

Nanomaterials Expert Ganpati Ramanath Named Fellow of Materials Research Society

Nanomaterials expert Ganpati Ramanath, the John Tod Horton '52 Professor of Materials Science and Engineering at Rensselaer Polytechnic Institute, has been named a fellow of the Materials Research Society (MRS) "for developing creative approaches to realize new nanomaterials via chemically directed nanostructure synthesis and assembly and for tailoring interfaces in electronics and energy applications using molecular nanolayers."

Doing the Neutron Dance

Two materials scientists, Suzanne te Velthuis and Stephan Rosenkranz, have been named fellows of the Neutron Scattering Society of America (NSSA).

Hirohisa Tanaka Joins SLAC to Push Limits of Neutrino Physics

Accomplished neutrino physicist Hirohisa Tanaka has joined the Department of Energy's SLAC National Accelerator Laboratory as a professor of particle physics and astrophysics. He oversees a group at the lab that is preparing for research with the future Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF). The experiment will give scientists unprecedented opportunities to learn more about neutrinos - fundamental particles with mysterious properties that could play crucial roles in the evolution of the universe.

University Teams to Compete in Department of Energy's 2018 National Cyber Defense Competition

The U.S. Department of Energy is proud to announce the 29 university teams selected to compete in the third annual Cyber Defense Competition (CDC), taking place April 6-7, 2018.

Jefferson Lab Announces May 19 Public Open House

The free event is open to the public and offers an opportunity for people of all ages to spend the day exploring this world-class research facility. The biennial open house features tours of the lab's unique particle accelerator facilities, as well as hands-on activities and interactive displays and demonstrations.


  • Filters

  • × Clear Filters

Getting Magnesium Ions to Pick Up the Pace

Magnesium ions move very fast to enable a new class of battery materials.

Seeing How Next-Generation Batteries Power-Up

Scientists directly see how the atoms in a magnesium-based battery fit into the structure of electrodes.

Worm-Inspired Tough Materials

Scientists mimic a worm's lethal jaw to design and form resilient materials.

How to Turn Light Into Atomic Vibrations

Converting laser light into nuclear vibrations is key to switching a material's properties on and off for future electronics.

Superacids Are Good Medicine for Super Thin Semiconductors

Scientists demonstrated that powerful acids heal certain structural defects in synthetic films.

Tubular Science Improves Polymer Solar Cells

Novel engineered polymers assemble buckyballs into columns using a conventional coating process.

Fast! Hard X-Ray Flash Breaks Speed Record

Lasting just a few hundred billionths of a billionth of a second, these bursts offer new tool to study chemistry and magnetism.

Scientists Have Overestimated Meteor Sizes

First demonstration of high-pressure metastability mapping with ultrafast X-ray diffraction shows objects aren't as large as previously thought.

Rewriting Resistance: Genetic Changes Increase Crops' Biomass and Sugar Release

Using genetic engineering, scientists improve biomass growth and conversion in woody and grassy feedstocks.

Measuring the Glow of Plants From Below

Novel observations suggest a great potential of measuring global gross primary production via solar-induced fluorescence.


Spotlight

Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University





Showing results

0-4 Of 2215