Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2018-02-05 14:05:35
  • Article ID: 688997

Team Develops New Type of Powerful Battery

Texas A&M-Led Team Doubles Down on Energy Storage with Novel Metal-Oxide Magnesium Battery

  • Credit: Justin Andrews, Texas A&M University

    A redesigned metastable phase of vanadium pentoxide (V2O5) shows extraordinary performance as a cathode material for magnesium batteries. The graphic compares the conventional (right) and metastable structures of V2O5.

Move over, lithium-ion; now, there's a better battery on the horizon.

A multi-institution team of scientists led by Texas A&M University chemist Sarbajit Banerjee has discovered an exceptional metal-oxide magnesium battery cathode material, moving researchers one step closer to delivering batteries that promise higher density of energy storage on top of transformative advances in safety, cost and performance in comparison to their ubiquitous lithium-ion (Li-ion) counterparts.

"The worldwide push to advance renewable energy is limited by the availability of energy storage vectors," says Banerjee in the team's paper, published today (Feb. 1) in the journal Chem, a new chemistry-focused journal by Cell Press. "Currently, lithium-ion technology dominates; however, the safety and long-term supply of lithium remain serious concerns. By contrast, magnesium is much more abundant than lithium, has a higher melting point, forms smooth surfaces when recharging, and has the potential to deliver more than a five-fold increase in energy density if an appropriate cathode can be identified."

Ironically, the team's futuristic solution hinges on a redesigned form of an old Li-ion cathode material, vanadium pentoxide, which they proved is capable of reversibly inserting magnesium ions.

"We've essentially reconfigured the atoms to provide a different pathway for magnesium ions to travel along, thereby obtaining a viable cathode material in which they can readily be inserted and extracted during discharging and charging of the battery," Banerjee says. This rare phenomenon is achieved by limiting the location of the magnesium ions to relatively uncomfortable atomic positions by design, based on the way the vanadium pentoxide is made -- a property known as metastability. This metastability helps prevent the magnesium ions from getting trapped within the material and promotes complete harvesting of their charge-storing capacity with negligible degradation of the material after many charge-recharge cycles.

The Ins and Outs of Intercalation

Banerjee, a Davidson Professor of Science in the Texas A&M Department of Chemistry and an affiliated faculty member in the Department of Materials Science and Engineering, has been working for a number of years to better understand ion intercalation -- the critical process by which ions like lithium and magnesium move in and out of other materials within intercalation batteries.

Using one of the world's most powerful soft X-ray microscopes -- the Scanning Transmission X-ray Microscope (STXM) and X-ray Emission beamlines -- at the Canadian Light Source in tandem with one of the world's highest resolution aberration-corrected transmission electron microscopes housed at the University of Illinois at Chicago (UIC), Banerjee and collaborators from the Lawrence Berkeley National Laboratory, the UIC and Argonne National Laboratory were able to observe the unique electronic properties of their novel vanadium pentoxide and directly prove magnesium-ion intercalation into the material. Collectively, the team applied decades of combined experience in materials science to explain the fundamental reasons why this new type of vanadium pentoxide is superior to the old version as well as to Li-ion batteries.

Laptops and cell phones are two examples of the many technologies enabled by the rapid development of the lithium-ion battery, which revolutionized energy storage capacity and rechargeability in comparison to its lead-acid and nickel-metal hydride predecessors. However, given the widespread use of lithium not only in portable electronic devices but increasingly in the much larger batteries required for electric vehicles and grid energy storage, lithium is expected to be in increasingly short supply in the long-term. Furthermore, Li-ion batteries are a risky game, as highlighted by recent widely publicized reports detailed in Scientific American, Reuters and Forbes, for example, in which Li-ion-powered devices have either caught fire or exploded as a result of the fundamental flammability and reactivity of lithium.

"Apart from being much safer for consumer applications, magnesium-ion technology is appealing fundamentally because each magnesium ion gives up two electrons per ion -- twice the charge, whereas each lithium ion gives up only one," says Texas A&M chemistry graduate student and NASA Space Technology Research Fellow Justin Andrews, first author on the team's paper. "This means that, all other considerations aside, if you can store as much magnesium in a material as you can store lithium, you immediately almost double the capacity of the battery."

Double the Capacity, Double the Trouble

But for all their perceived advantages, magnesium batteries have proven too good to be true since they were first proposed in the 1990s and essentially sidelined by a variety of problems; primarily, the lack of a suitable cathode, or positive electrode -- otherwise known as the part of a battery where the magnesium ions enter during discharge of the battery to power an electronic device and then exit during charging.

"Indeed, the most exciting thing about magnesium ions -- namely, that they store twice the charge in battery applications -- also forms the basis for the biggest challenge," says collaborating UIC chemist Jordi Cabana. "The higher charge of the magnesium ions make them 'stick' much more strongly with surrounding atoms.

In other words, Banerjee says, the magnesium ions get waylaid as they are traversing through the paths within the cathode material. Their sluggish movement is what makes it so difficult to make viable magnesium batteries.

"In many structures, some of these interactions are very favorable, meaning that the magnesium is quite happy to sit and stay a while in those specific sites," Andrews explains. "In our material, the magnesium is 'frustrated' as it moves through the lattice, because it encounters many less-than-optimal environments. In this sense, it is more than happy to just keep moving right along, leading to an improvement in capacity and diffusion."

The team's National Science Foundation-funded research features two additional current and former Texas A&M graduate students, Abhishek Parija and Peter M. Marley, respectively. David Prendergast, a Facility Director at Berkeley Lab's Molecular Foundry, a U.S. Department of Energy National User Facility for Nanoscale Science Research, helped the Texas A&M team design and interpret their calculations, which were experimentally verified in part by Fakra using Berkeley Lab's Advanced Light Source along with structural data collected at Argonne National Lab's Advanced Photon Source. Atomic resolution images of the new form of vanadium pentoxide were collected in collaboration with UIC physicist Robert F. Klie and physics graduate student Arijita Mukherjee and show direct evidence of magnesium intercalated within the material. Battery measurements that show reversibility and confirm the robustness of the cathode material complete the story and were conducted in collaboration with Cabana and former Cabana group member Hyun Deog Yoo.

The team's National Science Foundation-funded research features two additional current and former Texas A&M graduate students, Abhishek Parija and Peter M. Marley, respectively. David Prendergast, a Facility Director at Berkeley Lab's Molecular Foundry, a U.S. Department of Energy National User Facility for Nanoscale Science Research, helped the Texas A&M team design and interpret their calculations, which were experimentally verified in part by Fakra using Berkeley Lab's Advanced Light Source along with structural data collected at Argonne National Lab's Advanced Photon Source. Atomic resolution images of the new form of vanadium pentoxide were collected in collaboration with UIC physicist Robert F. Klie and physics graduate student Arijita Mukherjee and show direct evidence of magnesium intercalated within the material. Battery measurements that show reversibility and confirm the robustness of the cathode material complete the story and were conducted in collaboration with Cabana and former Cabana group member Hyun Deog Yoo. "On paper, magnesium batteries are highly desirable because they promise greater energy density on top of the ability to solve several of the key issues researchers -- and unfortunately consumers -- are discovering with lithium-ion batteries, including cost, safety, and performance at the most fundamental levels," Andrews says. "But the shift from lithium- to magnesium-ion technologies is not straightforward, and the many problems encountered when designing magnesium-ion cathodes have stymied the development of these more sustainable and safer batteries." Working Toward a Safer Energy Future Andrews says the team's research marks an important turning point in the field because it represents a significant advance toward solving the cathode problem while also highlighting the inherent advantages of using much more imaginative, metastable materials like this new form of vanadium pentoxide. But even he admits there's much more work to do before this particular '90s trend comes back in vogue. "While this research has provided a great deal of insight, there are still several other fundamental problems to overcome before magnesium batteries become a reality," Andrews adds. "Nevertheless, this work moves magnesium batteries one step closer to reality -- namely, a reality where batteries would be less-expensive, lighter and safer for allowing for easier adoption to large-area formats necessary for electric vehicles and to store energy generated by solar and wind sources." The team's Chem paper, "Reversible Mg-Ion Insertion in a Metastable One-Dimensional Polymorph of V2O5," can be viewed online along with related figures and captions. Funding for the Molecular Foundry and UIC groups was provided in part by the Joint Center for Energy Storage Research, a Department of Energy Innovation Hub that is supported by the DOE Office of Science. Andrews' work is funded through the NASA Space Technology Research Fellowship Program.

For additional information on Banerjee and his research, visit http://www.chem.tamu.edu/rgroup/banerjee/.

X
X
X
  • Filters

  • × Clear Filters

The Relationship Between Charge Density Waves and Superconductivity? It's Complicated.

For a long time, physicists have tried to understand the relationship between a periodic pattern of conduction electrons called a charge density wave (CDW), and another quantum order, superconductivity, or zero electrical resistance, in the same material. Do they compete? Co-exist? Co-operate? Do they go their separate ways?

Splitting Water: Nanoscale Imaging Yields Key Insights

In the quest to realize artificial photosynthesis to convert sunlight, water, and carbon dioxide into fuel - just as plants do - researchers need to not only identify materials to efficiently perform photoelectrochemical water splitting, but also to understand why a certain material may or may not work. Now scientists at Lawrence Berkeley National Laboratory have pioneered a technique that uses nanoscale imaging to understand how local, nanoscale properties can affect a material's macroscopic performance.

Feeding Plants to This Algae Could Fuel Your Car

The research shows that a freshwater production strain of microalgae, Auxenochlorella protothecoides, is capable of directly degrading and utilizing non-food plant substrates, such as switchgrass, for improved cell growth and lipid productivity, useful for boosting the algae's potential value as a biofuel.

No More Zigzags: Scientists Uncover Mechanism That Stabilizes Fusion Plasmas

Article describes simulation of physics behind elimination of sawtooth instabilities.

Solutions to Water Challenges Reside at the Interface

Leading Argonne National Laboratory researcher Seth Darling describes the most advanced research innovations that could address global clean water accessibility.

New Cost-Effective Instrument Measures Molecular Dynamics on a Picosecond Timescale

Studying the photochemistry has shown that ultraviolet radiation can set off harmful chemical reactions in the human body and, alternatively, can provide "photo-protection" by dispersing extra energy. To better understand the dynamics of these photochemical processes, a group of scientists irradiated the RNA base uracil with ultraviolet light and documented its behavior on a picosecond timescale. They discuss their work this week in The Journal of Chemical Physics.

Exploding Waves from Colliding Dissipative Pulses

The interaction of traveling waves in dissipative systems, physical systems driven by energy dissipation, can yield unexpected and sometimes chaotic results. These waves, known as dissipative pulses are driving experimental studies in a variety of areas that involve matter and energy flows. In the journal Chaos, researchers discuss their work studying collisions between three types of DSs to determine what happens when these traveling waves interact.

Theorists Publish Highest-Precision Prediction of Muon Magnetic Anomaly

UPTON, NY--Theoretical physicists at the U.S. Department of Energy's (DOE's) Brookhaven National Laboratory and their collaborators have just released the most precise prediction of how subatomic particles called muons--heavy cousins of electrons--"wobble" off their path in a powerful magnetic field.

How Gold Nanoparticles Could Improve Solar Energy Storage

Star-shaped gold nanoparticles, coated with a semiconductor, can produce hydrogen from water over four times more efficiently than other methods - opening the door to improved storage of solar energy and other advances that could boost renewable energy use and combat climate change, according to Rutgers University-New Brunswick researchers.

National Ignition Facility Sets New Energy Record

Lawrence Livermore National Laboratory's National Ignition Facility (NIF) laser system has set a new record, firing 2.15 megajoules (MJ) of energy to its target chamber - a 15 percent improvement over NIF's design specification of 1.8 MJ, and more than 10 percent higher than the previous 1.9 MJ energy record set in March 2012. Increasing NIF's energy limit will expand the parameter space for stockpile stewardship experiments and provide a significant boost to the pursuit of ignition.


  • Filters

  • × Clear Filters

Funding for New DOE Energy Frontier Research Center at Brookhaven Lab

UPTON, NY--The U.S. Department of Energy (DOE) has announced funding for a new Energy Frontier Research Center (EFRC) to be led by DOE's Brookhaven National Laboratory. The Brookhaven EFRC, named "Molten Salts in Extreme Environments," will focus on understanding the properties of a class of materials with potential applications in energy technologies--particularly in nuclear power.

Two Stony Brook Researchers Receive Energy Frontier Research Center Awards Totaling $21.75M

Stony Brook University received notification from the U.S. Department of Energy (DOE) that two proposals directed by SBU faculty to expand or develop Energy Frontier Research Centers (EFRCs) designed to accelerate scientific breakthroughs needed to strengthen U.S. economic leadership and energy security will receive funding totaling $21.75 million. The two Stony Brook EFRCs are the Center for Mesoscale Transport Properties (m2M), led by renowned energy storage researcher, Esther Takeuchi, PhD, which will receive a four-year $12 million grant for the existing center; and the creation of a new EFRC, A Next Generation Synthesis Center (GENESIS) led by John Parise, PhD, which will receive a four-year $9.75 million grant.

Seth Davidovits Wins 2018 Marshall N. Rosenbluth Dissertation Award

Article describes dissertation award won by Seth Davidovits.

DOE Launches New Lab Partnering Service

The U.S. Department of Energy officially launched the Lab Partnering Service (LPS), an on-line, single access point platform for investors, innovators, and institutions to identify, locate, and obtain information from DOE's 17 national laboratories.

Department of Energy Announces $75 Million for High Energy Physics Research

The U.S. Department of Energy (DOE) announced $75 million in funding for 77 university research awards on a range of topics in high energy physics to advance knowledge of how the universe works at its most fundamental level.

Thesis Prize Winner's Calculations Characterize Neutrino Interactions

Alessandro Baroni is helping demystify one of the most mysterious particles. His work is contributing to our understanding of neutrinos, and it has earned him the 2017 Jefferson Science Associates Thesis Prize for work performed on a thesis related to research at the Department of Energy's Thomas Jefferson National Accelerator Facility

10 Questions for Steven Cowley, New Director of the Princeton Plasma Physics Laboratory

Steven Cowley, a theoretical physicist and international authority on fusion energy, became the seventh Director of the Princeton Plasma Physics Laboratory (PPon July 1 and will be Princeton professor of astrophysical sciences on September 1.

Ames Laboratory to lead new Center for Advancement of Topological Semimetals

Ames Laboratory will receive $10.75 million over four yearrs for a new Center for Advancement of Topological Semimetals as one of the Department of Energy's Energy Frontier Research Centers.

DOE Awards $100 Million for Energy Frontier Research Centers

U.S. Secretary of Energy Rick Perry announced $100 million in funding for 42 Energy Frontier Research Centers (EFRCs) to accelerate the scientific breakthroughs needed to strengthen U.S. economic leadership and energy security.

Argonne welcomes <em>The Martian</em> author Andy Weir

Best-selling science fiction author Andy Weir visited Argonne to give a series of standing-room-only talks, inspiring students and scientists alike.


  • Filters

  • × Clear Filters

Sugar-Coated Sheets Selectively Target Pathogens

Researchers design self-assembling nanosheets that mimic the surface of cells.

Tracking Down Helium-4's Quarks and Gluons

Scientists obtain the first exclusive measurement of deeply virtual Compton scattering of electrons off helium-4, vital to obtaining an unambiguous 3-D view of quarks and gluons within nuclei.

Predicting Magnetic Explosions: From Plasma Current Sheet Disruption to Fast Magnetic Reconnection

Supercomputer simulations and theoretical analysis shed new light on when and how fast reconnection occurs.

Is Nature Exclusively Left Handed? Using Chilled Atoms to Find Out

Elegant techniques of trapping and polarizing atoms open vistas for beta-decay tests of fundamental symmetries, key to understanding the most basic forces and particles constituting our universe.

As Future Batteries, Hybrid Supercapacitors Are Super-Charged

A new supercapacitor could be a competitive alternative to lithium-ion batteries.

Forever Young Catalyst Reduces Diesel Emissions

Atom probe tomography reveals key explanations for stable performance over a cutting-edge diesel-exhaust catalyst's lifetime.

Sense Like a Shark: Saltwater-Submersible Films

A nickelate thin film senses electric field changes analogous to the electroreception sensing organ in sharks, which detects the bioelectric fields of prey.

A Bit of Quantum Logic--What Did the Atom Say to the Quantum Dot?

Let's talk! Scientists demonstrate coherent coupling between a quantum dot and a donor atom in silicon, vital for moving information inside quantum computers.

New Tech Uses Isomeric Beams to Study How and Where the Galaxy Makes One of Its Most Common Elements

A new measurement using a beam of aluminum-26 prepared in a metastable state allows researchers to better understand the creation of the elements in our galaxy.

Simulations of Magnetically Confined Plasmas Reveal a Self-Regulating Stabilizing Mechanism

A mysterious mechanism that prevents instabilities may be similar to the process that maintains the Earth's magnetic field.


Spotlight

Tuesday July 03, 2018, 11:05 AM

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

Brookhaven National Laboratory

Friday June 29, 2018, 06:05 PM

Argonne welcomes The Martian author Andy Weir

Argonne National Laboratory

Monday June 18, 2018, 09:55 AM

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

Illinois Mathematics and Science Academy (IMSA)

Friday June 15, 2018, 10:00 AM

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Rensselaer Polytechnic Institute (RPI)

Thursday June 07, 2018, 03:05 PM

Celebrating 40 years of empowerment in science

Argonne National Laboratory

Monday May 07, 2018, 10:30 AM

Introducing Graduate Students Across the Globe to Photon Science

Brookhaven National Laboratory

Wednesday May 02, 2018, 04:05 PM

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

Department of Energy, Office of Science

Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago





Showing results

0-4 Of 2215