Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2018-03-06 16:05:58
  • Article ID: 690669

Big Steps Toward Control of Production of Tiny Building Blocks

  • Credit: Elle Starkman/PPPL Office of Communications

    Members of the plasma nanosynthesis team. Front row from left: Alexandros Gerakis, Vladimir Vekseleman, Shurik Yatom. Back row from left: Yevgeny Raitses, Bruce Koel, Igor Kaganovich, Alexander Khrabry, Brent Stratton, Rachel Selinsky, Andrei Khodak.

Nanoparticles, superstrong and flexible structures such as carbon nanotubes that are measured in billionths of a meter — a diameter thousands of times thinner than a human hair — are used in everything from microchips to sporting goods to pharmaceutical products. But large-scale production of high-quality particles faces challenges ranging from improving the selectivity of the synthesis that creates them and the quality of the synthesized material to the development of economical and reliable synthesis processes.

 However, this situation could change as a result of research at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), where scientists have developed the diagnostic tools that are being used to advance an improved and integrated understanding of plasma-based synthesis — a widely used but poorly understood tool for creating nanostructures. PPPL scientists and collaborators outline, in several published papers, recent research that could help to develop controllable and selective fabrication of nanomaterials with prescribed structures. Such basic research could pave the way toward manufacturing advances in a variety of industries.

Unique observations

The papers report unique observations of the synthesis in carbon plasma generated by an electric arc in situ, or as the process unfolds. Researchers create the plasma arc between two carbon electrodes, producing a hot carbon vapor composed of atomic nuclei and molecules that cool and synthesize — or condense — into particles that grow into nanostructures by bunching together.

Direct observation has produced “a big step forward in understanding how carbon nanoparticles grow in plasma generated by arc,” said physicist Yevgeny Raitses, head of the Laboratory for Plasma Nanosynthesis at PPPL. “The idea now is to combine experimental results with computer modeling for improved control of the process and to apply what we learn to other types of nanomaterials and nanomaterial synthesis.”

Following is a look at three papers that break new ground in unraveling the poorly understood arc synthesis process. Support for this work comes from the DOE Office of Science).

Spotting precursors that become nanotubes. Missing from today’s knowledge is a detailed understanding of the precursors of nanotubes that are formed from the vapor during synthesis. This poses a key challenge for predicting the mechanism for nanosynthesis with a carbon plasma arc.

Shedding light on this process are new discoveries at PPPL. Research led by physicist Vladislav Vekselman and reported in the journal Plasma Sources Science and Technology shows that what governs the synthesis of carbon nanotubes in a purely carbon electric arc is molecular precursors that include “dimers” — molecules formed by two carbon atoms.

This finding opens the door to improved predictive modeling of nanosynthesis in carbon arcs. “This is the first time that a laser-induced diagnostic technique has been applied to this type of synthesis,” Vekselman said. “We now know where and how much precursor is formed in carbon arc material.”

Supporting these findings are simulations of carbon arc synthesis conducted by PPPL physicist Alexander Khrabry. “Our models are based on the underlying physics of vaporization, condensation and the formation of nanostructures,” said physicist Igor Kaganovich, deputy head of the PPPL Theory Department. “We apply this to results of the in situ experiments to develop predictions that can be tested with further experiments.”

Such predictive models have begun to make progress. “Having in situ measurements while synthesis takes place is a very valuable aid to understanding and modeling,” said Brent Stratton, head of the diagnostics division of PPPL and deputy director of the Plasma Science and Technology (PS&T) Department that houses the nanosynthesis laboratory. “What this project shows is the combined value of experiments and modeling for deepening understanding of plasma arc synthesis.”

Detecting nanoparticle growth. To further such understanding, researchers must monitor the production of particles in sizes ranging from nanometers all the way down to the atomic scale. PPPL research has now built and demonstrated a unique table-top laser technique for in situ detection of nanoparticle growth. “This custom-made diagnostic helps piece together the puzzle of plasma arc nanosynthesis,” said physicist Alexandros Gerakis of PPPL, who designed the technique and is lead author of its description in the journal Physical Review Applied. “There had previously been no good way to monitor the process.” 

The novel method, derived from a prediction by Mikhail Shneider of Princeton University, detects particles that flow within and from the electric arc. The technique observes particles some five nanometers in size, and could be used to measure materials created by other forms of nanosynthesis as well. Such in situ measurement of nanoparticles during large-volume synthesis could advance understanding of the mechanisms behind nanoparticle growth. 

Why some synthesis goes wrong. Among the most promising types of nanomaterials are single-wall carbon nanotubes that carbon arc discharges can produce on an industrial scale. But a key drawback to this method is the impurity of much of the synthesized nanomaterial, which includes a mix of nanotubes, carbon soot and random carbon particles.

A chief source of these drawbacks is the unstable behavior of carbon arcs, PPPL has found. Such behavior creates two modes of production, which the laboratory calls “synthesis-on,” for pure nanotube fabrication, and “synthesis-off,” for impure results. “The synthesis in plasma arcs is 20 percent on and 80 percent off,” said physicist Shurik Yatom, lead author of the results published in the journal Carbon.

In these experiments, Yatom used a conventional arc synthesis technique and filled one of the two electrodes — called an “anode” — with graphite powder and a catalyst and found that the synthesis was erratic, switching between the dominant synthesis-off mode and the far less common synthesis-on mode. Fast-camera images, electric characteristics and emission spectra showed that the arc engaged the contents of the anode directly in the synthesis-on mode, but oscillated around the hollow anode in the synthesis-off mode and was unable to interact with the powdered graphite and catalyst inside.

The team also constructed a probing device to selectively collect the synthesized product between the two modes. Evaluating the synthesized nanomaterials was Rachel Selinsky of Princeton University, who found that the vast majority of nanotubes were collected during the “synthesis-on” mode.

The findings revealed the need for stabilizing the arc so that it constantly engaged the graphite and catalyst for the continuous production of single-wall carbon nanotubes. The paper proposes several pathways going forward, ranging from the use of thinner-walled to solid composite anodes for producing nanotubes in a continuous manner with fewer unwanted byproducts.

Finally, understanding the cause of such impurities is crucial for future research at PPPL and elsewhere. As scientists continue to develop methods of in situ characterization for nanostructures, they must monitor the arc behavior and distinguish between results obtained in the synthesis-on and synthesis-off modes.

Going forward, PPPL conducts in situ measurements of plasma nanotubes synthesized from boron nitride, a promising material with aerospace and electronics applications. Collaborating on this work are professors Roberto Car of Princeton University, Predrag Kristic of the State University of New York at Stony Brook, and Bruce Koel of Princeton.

Overseeing PPPL nanosynthesis projects is Phil Efthimion, head of the PS&T Department. Following are coauthors of the papers. Nanoparticle precursors: Vladislav Vekselman, Alexander Khrabry, Igor Kaganovich, Brent Stratton and Yevgeny Raitses of PPPL, and Rachel Selinsky of Princeton University. Detecting nanoparticle growth: Alexandros Gerakis, James Mitrani, Brent Stratton, and Yevgeny Raitses of PPPL, Yao-Wen Yeh and Mikhail Schneider of Princeton University. Synthesis on and synthesis off: Shurik Yatom and Yevgeny Raitses of PPPL, Rachel Selinsky and Bruce Koel of Princeton University.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X
X
X
  • Filters

  • × Clear Filters

Two Faces Offer Limitless Possibilities

Named for the mythical god with two faces, Janus membranes -- double-sided membranes that serve as gatekeepers between two substances -- have emerged as a material with potential industrial uses.

Relax, Just Break It

Argonne scientists and their collaborators are helping to answer long-held questions about a technologically important class of materials called relaxor ferroelectrics.

Putting Bacteria to Work

Bacteria are diverse and complex creatures that are demonstrating the ability to communicate organism-to-organism and even interact with the moods and perceptions of their hosts (human or otherwise). Scientists call this behavior "bacterial cognition," a systems biology concept that treats these microscopic creatures as beings that can behave like information processing systems.

New Computer Model Predicts How Fracturing Metallic Glass Releases Energy at the Atomic Level

Metallic glasses are an exciting research target for tantalizing applications; however, the difficulties associated with predicting how much energy these materials release when they fracture is slowing down development of metallic glass-based products. Recently, researchers developed a way of simulating to the atomic level how metallic glasses behave as they fracture. This modeling technique could improve computer-aided materials design and help researchers determine the properties of metallic glasses. The duo reports their findings in the Journal of Applied Physics.

The Relationship Between Charge Density Waves and Superconductivity? It's Complicated.

For a long time, physicists have tried to understand the relationship between a periodic pattern of conduction electrons called a charge density wave (CDW), and another quantum order, superconductivity, or zero electrical resistance, in the same material. Do they compete? Co-exist? Co-operate? Do they go their separate ways?

Splitting Water: Nanoscale Imaging Yields Key Insights

In the quest to realize artificial photosynthesis to convert sunlight, water, and carbon dioxide into fuel - just as plants do - researchers need to not only identify materials to efficiently perform photoelectrochemical water splitting, but also to understand why a certain material may or may not work. Now scientists at Lawrence Berkeley National Laboratory have pioneered a technique that uses nanoscale imaging to understand how local, nanoscale properties can affect a material's macroscopic performance.

Feeding Plants to This Algae Could Fuel Your Car

The research shows that a freshwater production strain of microalgae, Auxenochlorella protothecoides, is capable of directly degrading and utilizing non-food plant substrates, such as switchgrass, for improved cell growth and lipid productivity, useful for boosting the algae's potential value as a biofuel.

No More Zigzags: Scientists Uncover Mechanism That Stabilizes Fusion Plasmas

Article describes simulation of physics behind elimination of sawtooth instabilities.

Solutions to Water Challenges Reside at the Interface

Leading Argonne National Laboratory researcher Seth Darling describes the most advanced research innovations that could address global clean water accessibility.

New Cost-Effective Instrument Measures Molecular Dynamics on a Picosecond Timescale

Studying the photochemistry has shown that ultraviolet radiation can set off harmful chemical reactions in the human body and, alternatively, can provide "photo-protection" by dispersing extra energy. To better understand the dynamics of these photochemical processes, a group of scientists irradiated the RNA base uracil with ultraviolet light and documented its behavior on a picosecond timescale. They discuss their work this week in The Journal of Chemical Physics.


  • Filters

  • × Clear Filters

Department of Energy Invests $64 Million in Advanced Nuclear Technology

The U.S. Department of Energy (DOE) has announced nearly $64 million in awards for advanced nuclear energy technology to DOE national laboratories, industry, and 39 U.S. universities in 29 states. Rensselaer Polytechnic Institute has been awarded $800,000 for analysis of nuclear power plants' accident propagation and mitigation processes.

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

Miao Yu, associate professor in the Howard P. Isermann Department of Chemical and Biological Engineering at Rensselaer Polytechnic Institute, has been named the Priti and Mukesh Chatter Career Development Professor. His research focuses on developing advanced nanomaterials for energy and environmental applications.

Funding for New DOE Energy Frontier Research Center at Brookhaven Lab

UPTON, NY--The U.S. Department of Energy (DOE) has announced funding for a new Energy Frontier Research Center (EFRC) to be led by DOE's Brookhaven National Laboratory. The Brookhaven EFRC, named "Molten Salts in Extreme Environments," will focus on understanding the properties of a class of materials with potential applications in energy technologies--particularly in nuclear power.

Two Stony Brook Researchers Receive Energy Frontier Research Center Awards Totaling $21.75M

Stony Brook University received notification from the U.S. Department of Energy (DOE) that two proposals directed by SBU faculty to expand or develop Energy Frontier Research Centers (EFRCs) designed to accelerate scientific breakthroughs needed to strengthen U.S. economic leadership and energy security will receive funding totaling $21.75 million. The two Stony Brook EFRCs are the Center for Mesoscale Transport Properties (m2M), led by renowned energy storage researcher, Esther Takeuchi, PhD, which will receive a four-year $12 million grant for the existing center; and the creation of a new EFRC, A Next Generation Synthesis Center (GENESIS) led by John Parise, PhD, which will receive a four-year $9.75 million grant.

Seth Davidovits Wins 2018 Marshall N. Rosenbluth Dissertation Award

Article describes dissertation award won by Seth Davidovits.

DOE Launches New Lab Partnering Service

The U.S. Department of Energy officially launched the Lab Partnering Service (LPS), an on-line, single access point platform for investors, innovators, and institutions to identify, locate, and obtain information from DOE's 17 national laboratories.

Department of Energy Announces $75 Million for High Energy Physics Research

The U.S. Department of Energy (DOE) announced $75 million in funding for 77 university research awards on a range of topics in high energy physics to advance knowledge of how the universe works at its most fundamental level.

Thesis Prize Winner's Calculations Characterize Neutrino Interactions

Alessandro Baroni is helping demystify one of the most mysterious particles. His work is contributing to our understanding of neutrinos, and it has earned him the 2017 Jefferson Science Associates Thesis Prize for work performed on a thesis related to research at the Department of Energy's Thomas Jefferson National Accelerator Facility

10 Questions for Steven Cowley, New Director of the Princeton Plasma Physics Laboratory

Steven Cowley, a theoretical physicist and international authority on fusion energy, became the seventh Director of the Princeton Plasma Physics Laboratory (PPon July 1 and will be Princeton professor of astrophysical sciences on September 1.

Ames Laboratory to lead new Center for Advancement of Topological Semimetals

Ames Laboratory will receive $10.75 million over four yearrs for a new Center for Advancement of Topological Semimetals as one of the Department of Energy's Energy Frontier Research Centers.


  • Filters

  • × Clear Filters

Steering Light with Dynamic Lens-on-MEMS

Scientists add active control to design capabilities for new lightweight flat optical devices.

Sugar-Coated Sheets Selectively Target Pathogens

Researchers design self-assembling nanosheets that mimic the surface of cells.

Tracking Down Helium-4's Quarks and Gluons

Scientists obtain the first exclusive measurement of deeply virtual Compton scattering of electrons off helium-4, vital to obtaining an unambiguous 3-D view of quarks and gluons within nuclei.

Predicting Magnetic Explosions: From Plasma Current Sheet Disruption to Fast Magnetic Reconnection

Supercomputer simulations and theoretical analysis shed new light on when and how fast reconnection occurs.

Is Nature Exclusively Left Handed? Using Chilled Atoms to Find Out

Elegant techniques of trapping and polarizing atoms open vistas for beta-decay tests of fundamental symmetries, key to understanding the most basic forces and particles constituting our universe.

As Future Batteries, Hybrid Supercapacitors Are Super-Charged

A new supercapacitor could be a competitive alternative to lithium-ion batteries.

Forever Young Catalyst Reduces Diesel Emissions

Atom probe tomography reveals key explanations for stable performance over a cutting-edge diesel-exhaust catalyst's lifetime.

Sense Like a Shark: Saltwater-Submersible Films

A nickelate thin film senses electric field changes analogous to the electroreception sensing organ in sharks, which detects the bioelectric fields of prey.

A Bit of Quantum Logic--What Did the Atom Say to the Quantum Dot?

Let's talk! Scientists demonstrate coherent coupling between a quantum dot and a donor atom in silicon, vital for moving information inside quantum computers.

New Tech Uses Isomeric Beams to Study How and Where the Galaxy Makes One of Its Most Common Elements

A new measurement using a beam of aluminum-26 prepared in a metastable state allows researchers to better understand the creation of the elements in our galaxy.


Spotlight

Friday July 20, 2018, 03:00 PM

Department of Energy Invests $64 Million in Advanced Nuclear Technology

Rensselaer Polytechnic Institute (RPI)

Thursday July 19, 2018, 05:00 PM

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

Rensselaer Polytechnic Institute (RPI)

Tuesday July 03, 2018, 11:05 AM

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

Brookhaven National Laboratory

Friday June 29, 2018, 06:05 PM

Argonne welcomes The Martian author Andy Weir

Argonne National Laboratory

Monday June 18, 2018, 09:55 AM

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

Illinois Mathematics and Science Academy (IMSA)

Friday June 15, 2018, 10:00 AM

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Rensselaer Polytechnic Institute (RPI)

Thursday June 07, 2018, 03:05 PM

Celebrating 40 years of empowerment in science

Argonne National Laboratory

Monday May 07, 2018, 10:30 AM

Introducing Graduate Students Across the Globe to Photon Science

Brookhaven National Laboratory

Wednesday May 02, 2018, 04:05 PM

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

Department of Energy, Office of Science

Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University





Showing results

0-4 Of 2215