Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2018-05-09 12:05:10
  • Article ID: 694279

SLAC's X-ray Laser Opens New View on Proteins Related to Alzheimer's Disease

By placing the tiniest strands of proteins on one-atom-thick graphene, scientists capture promising X-ray laser images of these elusive biomolecules that play a key role in neurodegenerative diseases.

  • Credit: Greg Stewart/SLAC National Accelerator Laboratory

    Experiments at SLAC’s Linac Coherent Light Source show the promise of using X-ray free-electron lasers to better understand the structure and function of amyloid fibrils, tiny protein strands that play a role in diseases like Alzheimer’s and Parkinson’s. In this illustration, X-ray light penetrates a sample of amyloid fibrils placed on the honeycomb-like carbon lattice of graphene, a new method that produces cleaner data because the thin graphene virtually disappears from view.

To learn more about diseases such as Alzheimer’s and Parkinson’s, scientists have zeroed in on invisibly small protein filaments that bunch up to form fibrous clusters called amyloids in the brain: How do these fibrils form and how do they lead to disease?

Until now, the best tools for studying them have generated limited views, largely because the fibrils strands are so complex and tiny, just a few nanometers thick.

Now an international research team has come up with a new method with potential for revealing the structure of individual amyloid fibrils with powerful beams of X-ray laser light. They describe it in a report published today in Nature Communications.

In experiments conducted at the Linac Coherent Light Source (LCLS) at the Department of Energy’s SLAC National Accelerator Laboratory, the scientists placed up to 50 fibrils at a time on a layer of graphene, whose carbon atoms are arranged in a honeycomb-like pattern, and hit them with bursts of X-ray laser light. The graphene, it turned out, was almost transparent to the X-rays, and this allowed them to probe the structures of the delicate fibrils without picking up significant extraneous signals from the graphene layer in individual snapshots.

While the team did not uncover the complete fibril structure, they said the innovative method they developed at LCLS opens up a promising path for amyloid studies using X-ray free-electron lasers, or XFELs, such as LCLS.

Carolin Seuring, a scientist at the Center for Free-Electron Laser Science (CFEL) at DESY in Germany and principal author of the paper, said the results suggest this technique could even be used to determine the structure of individual fibrils.

“There is a common consensus that it is not the amyloid fiber alone, but rather the protofilaments composing the fiber and the process of fibril formation that are toxic to the cell,” she said. “XFEL-based experiments have the potential to overcome the challenges we’ve faced in better understanding amyloid fibrils.”

The Problem with Amyloids

While amyloid fibrils are believed to play a major role in the development of neurodegenerative diseases, scientists have recently discovered that they also have other functions, Seuring said.

“The ‘feel-good hormone’ endorphin, for example, can form amyloid fibrils in the pituitary gland,” she said. “They dissolve into individual molecules when the acidity of their surroundings changes, after which these molecules can fullfil their purpose in the body. Other amyloid proteins, such as those found in post-mortem brains of patients suffering from Alzheimer’s, accumulate as amyloid fibrils in the brain, and cannot be broken down and therefore impair brain function in the long term.”

Accurate information about the structure of amyloid fibrils can inform scientists about their function, she added.

“Our aim is to understand the role of the formation and structure of amyloid fibrils in the body and in the development of neurodegenerative diseases,” Seuring said.

One barrier to studying amyloid fibrils is that they cannot be grown as crystals, which are the conventional targets for structural studies using X-rays. And because individual amyloid fibrils are so small, they don’t produce a measurable signal when exposed to X-rays. Scientists typically line up millions of fibrils parallel to each other to amplify the signal, but information about their individual differences is lost in the process.

“A major part of our understanding about amyloid fibrils is derived from nuclear magnetic resonance and cryo-electron microscopy data,” Seuring said. But these methods are also of limited value for seeing individual differences between amyloid fibrils or observing their formation. “The structural analysis of amyloids is complex and examining them using existing methods is hampered by differences between the fibrils within a single sample,’” she said “Being able to look at the individual components of the sample would make it possible to determine the 3D structure of one type of fibril at a time.”

The New Approach

Earlier attempts to study fibrils at X-ray lasers delivered them into the path of the beam in jets of fluid. Switching to a solid graphene carrier gave the team two advantages, according to CFEL’s Henry Chapman, a professor at the University of Hamburg and a lead scientist at DESY.

Because graphene is just one layer of atoms thick, it leaves hardly a trace in the diffraction patterns formed by X-rays scattering off the fibrils, which are used to determine their structures, he said. And the regular structure of the graphene encourages the fibrils to all line up in the same direction.

This allows diffraction patterns to be obtained from fewer than 50 amyloid fibrils. Based on the results, the team hopes to eventually get patterns from single fibrils. To get to that goal, new methods of exposing a single fibril to the XFEL beam will need to be developed, according to Seuring: “With enough snapshots, a full 3D data set of a single fibril should be possible.”

The exceptionally bright and narrowly focused beam at LCLS’s Coherent X-ray Imaging instrument was also key to the team’s success in taking data from such a small number of fibrils, according to SLAC staff scientist Mengning Liang.

Intense X-ray pulses at XFELs limit the exposure of delicate samples to damaging X-rays. In this study, the fibrils were exposed for only a few femtoseconds, or millionths of a billionth of a second. Before the molecules are destroyed, information about their structure can be read by detectors.

“Fibrils are a third category of samples that can be studied with the ‘diffract before destroy’ method at XFELs, in addition to single particles and crystals,” Liang said. “In some regards, fibrils fit between the other two: they have regular, recurring variations in structure like crystals, but without the rigid crystal structure.”

The scientists tested their method on samples of well-studied tobacco mosaic virus filaments and smaller amyloid fibrils, some of which are associated with certain types of cancer. The tests produced structural data with a high degree of accuracy: The resolution in the diffraction images was almost on the scale of a single atom.

 “It is amazing that we are essentially carrying out the same experiments as Rosalind Franklin did on DNA in 1952, which led to the discovery of the double helix, but now we are reaching the level of single molecules,” says Chapman.

LCLS is a DOE Office of Science user facility. Other researchers who contributed to this study came from the University of Zurich; Center for Cellular Imaging and Nano Analytics in Switzerland; DOE’s Lawrence Livermore National Laboratory; University of Canterbury; University of Gothenburg; University of Bordeaux; University of Copenhagen; ETH Zurich; University of Oxford; Diamond Light Source; and the University of Hamburg.

This article is based in part on a DESY press release.

Citation: Seuring, et alNature Communications, 9 May 2018 (10.1038/s41467-018-04116-9)


SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science. For more information, please visit slac.stanford.edu.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

X
X
X
  • Filters

  • × Clear Filters

Diamond 'Spin-Off' Tech Could Lead to Low-Cost Medical Imaging and Drug Discovery Tools

An international team led by scientists at Berkeley Lab and UC Berkeley discovered how to exploit defects in nanoscale and microscale diamonds and potentially enhance the sensitivity of magnetic resonance imaging and nuclear magnetic resonance systems while eliminating the need for their costly and bulky superconducting magnets.

PROSPECTing For Antineutrinos

The Precision Reactor Oscillation and Spectrum Experiment (PROSPECT) has completed installation of a novel antineutrino detector that will probe the possible existence of a new form of matter - sterile neutrinos.

How to Cope with Cases of Mistaken Identity: MINERvA's Tale of Pions and Neutrinos

Neutral pion production is a major character in a story of mistaken identity worthy of an Agatha Christie novel.

Perfecting the Noise-Canceling Neutrino Detector

MicroBooNE neutrino experiment cuts through the noise, clearing the way for signals made by the hard-to-detect particle.

Supersonic Waves May Help Electronics Beat the Heat

Researchers at the Department of Energy's Oak Ridge National Laboratory made the first observations of waves of atomic rearrangements, known as phasons, propagating supersonically through a vibrating crystal lattice--a discovery that may dramatically improve heat transport in insulators and enable new strategies for heat management in future electronics devices.

Riding Bacterium to the Bank

Jet fuel, pantyhose and plastic soda bottles are all products currently derived from petroleum. Sandia National Laboratories scientists have demonstrated a new technology based on bioengineered bacteria that makes it feasible to produce all three from renewable plant sources.

Flexible, Highly Efficient Multimodal Energy Harvesting

A piezoelectric ceramic foam supported by a flexible polymer support provides a 10-fold increase in the ability to harvest mechanical and thermal energy over standard piezo composites, according to Penn State researchers.

PNNL Successfully Vitrifies Three Gallons of Radioactive Tank Waste

News Release RICHLAND, Wash. -- In a first-of-its-kind demonstration, researchers at the Department of Energy's Pacific Northwest National Laboratory have vitrified low-activity waste from underground storage tanks at Hanford, immobilizing the radioactive and chemical materials within a durable glass waste form.Approximately three gallons of low-activity Hanford tank waste were vitrified at PNNL's Radiochemical Processing Laboratory in April.

Living Large: Exploration of Diverse Bacteria Signals Big Advance for Gene Function Prediction

Scientists at Lawrence Berkeley National Laboratory (Berkeley Lab), including researchers at the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), have developed a workflow that enables large-scale, genome-wide assays of gene importance across many conditions. The study, "Mutant Phenotypes for Thousands of Bacterial Genes of Unknown Function," has been published in the journal Nature and is by far the largest functional genomics study of bacteria ever published.

Quarks Feel the Pressure in the Proton

Inside every proton in every atom in the universe is a pressure cooker environment that surpasses the atom-crushing heart of a neutron star. That's according to the first measurement of a mechanical property of subatomic particles, the pressure distribution inside the proton, which was carried out by scientists at the Department of Energy's Thomas Jefferson National Accelerator Facility.


  • Filters

  • × Clear Filters

Power to the People

The University of Utah College of Engineering has received a $2 million grant to create a laboratory and develop new technology for communities with backup power sources, known as microgrids, so they can quickly and more securely operate in the event of a massive power outage due to a natural disaster or cyberattack.

The U. S. Department of Energy Announces $34 Million for Small Business Research and Development Grants

U.S. Energy Secretary Rick Perry announced that the Department of Energy will award 219 grants totaling $34 million to 183 small businesses in 41 states. Funded through DOE's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, today's selections are for Phase I research and development.

Raising the Heat to Lower the Cost of Solar Energy

Sandia National Laboratories will receive $10.5 million from the Department of Energy to research and design a cheaper and more efficient solar energy system.The work focuses on refining a specific type of utility-scale solar energy technology that uses mirrors to reflect and concentrate sunlight onto a receiver on a tower.

Solar Turbines, Inc. Selects Penn State to Establish Center of Excellence in Gas Turbines

After completing an extensive evaluation of institutions of higher learning in the United States and Europe, Solar Turbines Incorporated has chosen Penn State as a university partner to establish a center of excellence in gas turbines. The center involves numerous faculty across Penn State's College of Engineering.

ORNL Facility Receives American Nuclear Society's Historic Landmark Designation

The American Nuclear Society has designated the Radiochemical Engineering Development Center at the Department of Energy's Oak Ridge National Laboratory an ANS Nuclear Historic Landmark, recognizing more than 50 years of isotope production and nuclear fuel cycle research.

Steven Cowley named director of DOE's Princeton Plasma Physics Laboratory

Steven Cowley, a theoretical physicist and international authority on fusion energy, has been named director of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), effective July 1.

Scientists Turn X-ray Laser Into World's Fastest Water Heater

Scientists have used a powerful X-ray laser at the Department of Energy's SLAC National Accelerator Laboratory to heat water from room temperature to 100,000 degrees Celsius in less than a tenth of a picosecond, or millionth of a millionth of a second.

PNNL Part of a New National Center for Near-Atomic Resolution of Biological Molecules

A collaboration between the Pacific Northwest National Laboratory and Oregon Health & Science University has been chosen as a national center for a Nobel Prize-winning method of imaging, cryo-electron microscopy, that is revolutionizing structural biology.

SLAC Will Open One of Three NIH National Service Centers for Cryo-Electron Microscopy

The National Institutes of Health announced today that it will establish a national service and training center for cryogenic electron microscopy research at the Department of Energy's SLAC National Accelerator Laboratory.

Planck Collaboration Wins 2018 Gruber Cosmology Prize

The Planck Team--including researchers in Lawrence Berkeley National Laboratory's (Berkeley Lab's) Computational Research and Physics divisions--have been awarded the 2018 Gruber Cosmology Prize.


  • Filters

  • × Clear Filters

The Secret to Measuring an Antineutrino's Energy

Scientists are developing better models that describe both neutrino and antineutrino data, which can offer insights into the nature of the universe.

How to Cope with Cases of Mistaken Identity: MINERvA's Tale of Pions and Neutrinos

Neutral pion production is a major character in a story of mistaken identity worthy of an Agatha Christie novel.

Perfecting the Noise-Canceling Neutrino Detector

MicroBooNE neutrino experiment cuts through the noise, clearing the way for signals made by the hard-to-detect particle.

Keeping Tabs on Polysulfides in Batteries

Optimizing lithium-sulfur battery electrolytes for long life.

Huge "Thermometer" Takes Temperatures of Tiny Samples

New spectroscopic technique measures heat in itty-bitty volumes that could reveal insights for electronics and energy technology.

Water, Water, Everywhere, but How Does It Flow?

Scientists use new X-ray technique to see how water moves at the molecular level.

Magnetized Plasmas That "Twist Light" Can Produce Powerful Microscopes and More

A non-twisting laser beam moving through magnetized plasma turns into an optical vortex that traps, rotates, and controls microscopic particles, opening new frontiers in imaging.

Whistling While You Work: Fusion Scientists Find Inspiration in Atmospheric Whistles

Just like lightning, fusion plasmas contain odd electromagnetic whistler waves that could control destructive electrons in fusion reactors.

Zero Tolerance in Tokamaks: Eliminating Small Instabilities Before They Become Disruptions

Energetic ions and beam heating cause or calm instabilities, depending on the tokamak's magnetic field.

MURR Becomes First Reactor Facility to Join DOE's Isotope Program

DOE and MURR partner to ensure scientists have access to essential research isotopes.


Spotlight

Monday May 07, 2018, 10:30 AM

Introducing Graduate Students Across the Globe to Photon Science

Brookhaven National Laboratory

Wednesday May 02, 2018, 04:05 PM

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

Department of Energy, Office of Science

Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)





Showing results

0-4 Of 2215