Focus: DOE INDEPTH

Filters close
Released: 7-Jan-2016 2:05 PM EST
One Photon or Two?
Department of Energy, Office of Science

Physicists measured how often an electron exchanges two virtual photons as compared to one virtual photon.

Released: 7-Jan-2016 10:05 AM EST
Ripples Ruffle Primordial Plasma
Department of Energy, Office of Science

New research suggests that the hot, dense “soup” of particles that existed in the early universe was “stirred” by a magnetic wave that pushed around the positively and negative charged particles, according to scientists in the STAR collaboration at the Relativistic Heavy Ion Collider.

Released: 7-Jan-2016 10:05 AM EST
Ripples Ruffle Primordial Plasma
Department of Energy, Office of Science

New research suggests that the hot, dense “soup” of particles that existed in the early universe was “stirred” by a magnetic wave that pushed around the positively and negative charged particles, according to scientists in the STAR collaboration at the Relativistic Heavy Ion Collider.

Released: 5-Jan-2016 9:05 AM EST
Unprecedented Precise Determination of Three-Dimensional Atomic Positions
Department of Energy, Office of Science

Researchers combine high-resolution microscopy with new electron image analysis to measure atomic positions with an unprecedented precision of less than half the radius of a hydrogen atom.

Released: 5-Jan-2016 9:05 AM EST
Unprecedented Precise Determination of Three-Dimensional Atomic Positions
Department of Energy, Office of Science

Researchers combine high-resolution microscopy with new electron image analysis to measure atomic positions with an unprecedented precision of less than half the radius of a hydrogen atom.

Released: 11-Dec-2015 5:05 AM EST
Viable Single-Molecule Diodes
Department of Energy, Office of Science

Researchers designed a new technique to create single-molecule diodes that perform 50 times better than all previous designs.

Released: 10-Dec-2015 5:45 PM EST
Build a Network, Cellular Style
Department of Energy, Office of Science

For the first time, biomolecular machines have been exploited to perform mechanical work to deform and dynamically assemble complex, far-from-equilibrium polymer networks. This development could lead to new pathways to make complex, robust polymer structures using biological molecules.

Released: 10-Dec-2015 5:35 PM EST
Small Variations Mean Big Changes in Oxide’s Transformation From Insulator to Conductor
Department of Energy, Office of Science

More efficient computers and other devices often begin with new materials. One promising option is vanadium dioxide, which rapidly transforms from an insulator to a conductor in femtoseconds. Scientists found that the dioxide responds non-uniformly on the nanoscale, contrary to prior assumptions.

Released: 10-Dec-2015 5:05 PM EST
You Can Have Your Conductor and Insulator, Too
Department of Energy, Office of Science

By carefully tuning the chemical composition of a particular compound, researchers have created a topological crystalline insulator, whose bulk acts as an insulator but whose surface conducts electrical currents.

Released: 10-Dec-2015 5:00 PM EST
Spontaneous Pressure Regulation Within Artificial Cells
Department of Energy, Office of Science

Living cells respond to threats in their environment. What if materials could do the same? Using a similar pressure-regulating mechanism to that found in cells, scientists created an artificial cell that responds to a sudden and possibly catastrophic change in its surroundings.

Released: 10-Dec-2015 5:00 PM EST
Match-Heads Boost Photovoltaic Efficiency
Department of Energy, Office of Science

Crystal growth on a nano/microscale level produces “match-head”-like, three-dimensional structures that enhance light absorption and photovoltaic efficiency. This is the first large structure grown on a nanowire tip and it creates a completely new architecture for harnessing energy.

Released: 10-Dec-2015 4:55 PM EST
Major Gains in Ion Production for Radioactive Beams
Department of Energy, Office of Science

New charge breeding techniques produce beams of radioactive ions that can be accelerated to induce nuclear reactions, providing the opportunity to explore aspects of the nuclear force and to study in the laboratory some of the processes creating the elements in stellar environments.

Released: 10-Dec-2015 3:05 PM EST
Creating Novel Magnetic Islands for Spintronics
Department of Energy, Office of Science

For the first time, scientists demonstrated controlled generation of magnetic islands known as skyrmions—the magnetic version of a new class of exotic particles at room temperature.

Released: 10-Dec-2015 2:05 PM EST
A Nobel for Neutrinos: Super-Kamiokande
Department of Energy, Office of Science

The 2015 Nobel Prize in Physics was shared by Arthur B. McDonald, from the Sudbury Neutrino Observatory, and Takaaki Kajita, from the Super-Kamiokande collaboration, for discovering neutrino oscillations that show that neutrinos have mass.

Released: 8-Dec-2015 6:10 PM EST
A Nobel for Neutrinos: Sudbury Neutrino Observatory
Department of Energy, Office of Science

The 2015 Nobel Prize in Physics was shared by Arthur B. McDonald, the leader of the Sudbury Neutrino Observatory, and Takaaki Kajita, a leader of the Super-Kamiokande collaboration, for discovering neutrino oscillations, showing that neutrinos have mass.

Released: 8-Dec-2015 6:10 PM EST
A Nobel for Neutrinos: Sudbury Neutrino Observatory
Department of Energy, Office of Science

The 2015 Nobel Prize in Physics was shared by Arthur B. McDonald, the leader of the Sudbury Neutrino Observatory, and Takaaki Kajita, a leader of the Super-Kamiokande collaboration, for discovering neutrino oscillations, showing that neutrinos have mass.

Released: 8-Dec-2015 6:05 PM EST
Toward Powerful and Compact Terahertz Spectrometers
Department of Energy, Office of Science

Researchers fabricated high-performance quantum cascade lasers (and integrated them into a device to demonstrate new, high-power broadband terahertz frequency combs, which are powerful tools for high-precision measurements and spectroscopy.

Released: 8-Dec-2015 6:05 PM EST
Toward Powerful and Compact Terahertz Spectrometers
Department of Energy, Office of Science

Researchers fabricated high-performance quantum cascade lasers (and integrated them into a device to demonstrate new, high-power broadband terahertz frequency combs, which are powerful tools for high-precision measurements and spectroscopy.

Released: 8-Dec-2015 2:05 PM EST
Eco-Friendly Battery and Solar Cell All-in-One
Department of Energy, Office of Science

In solar flow batteries, the proposed charging process links harvesting solar energy and storing it as chemical energy via the electrolyte. Scientists built a solar flow battery that uses an eco-friendly, compatible solvent and needs a lower applied voltage to recharge the battery.

Released: 8-Dec-2015 2:05 PM EST
Near Zero Friction From Nanoscale Lubricants
Department of Energy, Office of Science

Friction hampers the movement of all mechanical parts, including engines for transportation. Scientists built a system with virtually no friction. The system wraps graphene flakes around nanodiamonds that then roll between a diamond-like carbon-surface and graphene on silica.

Released: 8-Dec-2015 2:05 PM EST
Eco-Friendly Battery and Solar Cell All-in-One
Department of Energy, Office of Science

In solar flow batteries, the proposed charging process links harvesting solar energy and storing it as chemical energy via the electrolyte. Scientists built a solar flow battery that uses an eco-friendly, compatible solvent and needs a lower applied voltage to recharge the battery.

Released: 8-Dec-2015 2:05 PM EST
Near Zero Friction From Nanoscale Lubricants
Department of Energy, Office of Science

Friction hampers the movement of all mechanical parts, including engines for transportation. Scientists built a system with virtually no friction. The system wraps graphene flakes around nanodiamonds that then roll between a diamond-like carbon-surface and graphene on silica.

Released: 8-Dec-2015 1:05 PM EST
Evaporation-Powered Motor and Light
Department of Energy, Office of Science

Scientists designed shape-changing composites that used evaporation to power locomotion and generate electricity.

Released: 8-Dec-2015 1:05 PM EST
Evaporation-Powered Motor and Light
Department of Energy, Office of Science

Scientists designed shape-changing composites that used evaporation to power locomotion and generate electricity.

Released: 8-Dec-2015 12:05 PM EST
X-ray Induced Quasiparticles: New Window on Unconventional Superconductivity
Department of Energy, Office of Science

A new type of particle has been created that can help explain the electron interactions responsible for high-temperature superconductivity.

Released: 8-Dec-2015 12:05 PM EST
X-ray Induced Quasiparticles: New Window on Unconventional Superconductivity
Department of Energy, Office of Science

A new type of particle has been created that can help explain the electron interactions responsible for high-temperature superconductivity.

Released: 4-Dec-2015 11:10 AM EST
Shape Shifters: Demonstrating Tunable Phase Shifting
Department of Energy, Office of Science

Scientists devised a new approach that balances attractions between particles and promises to become a useful tool to create designer materials that can repair damage.

Released: 4-Dec-2015 11:05 AM EST
Solar Water Splitting: Putting an Extra “Eye” on Surface Reactions that Store Sunlight as Fuel
Department of Energy, Office of Science

Water-splitting cells absorb sunlight and produce fuel. Creating such cells means pairing a material to absorb sunlight and generate electrons with the one that uses those electrons to produce fuel. Scientists introduced a novel way to study the flow of electrons where the materials meet.

Released: 3-Dec-2015 2:05 PM EST
What CAN It Be?
Department of Energy, Office of Science

Scientists revealed that cerium ammonium nitrate (CAN) changes into a complex structure when it is dissolved. The discovery raises pertinent questions about cerium’s behavior in chemical industries and gives insights into possible new opportunities for its use.

Released: 6-Oct-2015 11:30 AM EDT
The Majorana Demonstrator: First Module of Germanium Detectors Comes Online
Department of Energy, Office of Science

In 2014, the Majorana Demonstrator (MJD) started its search for neutrinoless double beta decay. Observation of this decay would have profound implications for our understanding of physics, including providing hints as to how the Big Bang produced more matter than it did antimatter.

Released: 6-Oct-2015 11:05 AM EDT
A Large-Area Detector for Fundamental Neutron Science
Department of Energy, Office of Science

How long do neutrons live? The answer could change how we think everything from the cosmos to coffee cups. Yet, scientists don’t agree on the neutron longevity. The disagreement is fanned by the limitations of today’s instruments. Now, a highly efficient detector is helping to resolve the puzzle.

Released: 6-Oct-2015 10:45 AM EDT
Laser Detection of Actinides and Other Elements
Department of Energy, Office of Science

Dramatic increases in ionization efficiencies for uranium, thorium, and palladium, which were made possible with RILIS, enable new studies relevant to nuclear fuels cycles, neutrino detection, and isotope production.

Released: 6-Oct-2015 10:05 AM EDT
New Artificial Cells Mimic Nature’s Tiny Reactors
Department of Energy, Office of Science

Pools of fatty molecules self-assemble around treated water droplets to create a cell-like bioreactor that could offer substantial advantages for carrying out complex synthesis processes.

Released: 2-Sep-2015 9:00 AM EDT
Cooperative Carbon Capture by a Novel Material that Mimics a Plant Enzyme
Department of Energy, Office of Science

Scientists discovered a material that exhibits an unprecedented mechanism for carbon dioxide capture-and-release with only small shifts in temperature. The material’s structure closely resembles an enzyme found in plants that captures carbon dioxide for conversion into nutrients.

Released: 2-Sep-2015 6:05 AM EDT
Two-Color X-Rays Give Scientists 3-D View of the Unknown
Department of Energy, Office of Science

Scientists can now get a high-resolution view of a sample or the details of the first steps in ultra-fast processes, thanks to researchers at SLAC National Accelerator Laboratory’s Linac Coherent Light Source.

Released: 1-Sep-2015 10:20 AM EDT
The World’s Thinnest Proton Channel
Department of Energy, Office of Science

Scientists correlated atomic-scale defects in graphene with a “bucket brigade” style mechanism that lets protons travel through the graphene. Demonstrating such a mechanism and the prospect for gating it could enable directing proton pathways for improved fuel cells and other uses.

Released: 31-Aug-2015 8:05 AM EDT
Super Water-Repellant Coatings Can Now Take the Pressure
Department of Energy, Office of Science

Extremely water-repellant surfaces were fabricated that can withstand pressures that are 10 times greater than the average pressure a surface would experience resting in a room. The surfaces resist the infiltration of liquid into the nanoscale pockets, staying drier than similar coatings.

Released: 31-Aug-2015 7:05 AM EDT
Skimming Uranium from the Sea
Department of Energy, Office of Science

Researchers developed a new, protein-based system that can mine certain types of uranium from sea water with exceedingly high affinity and selectivity.

Released: 31-Aug-2015 6:05 AM EDT
Up and Down Quarks Favored Over Strange Ones
Department of Energy, Office of Science

A suppression of strange quark production relative to up and down quark production had previously been noted; for the first time, the result has been verified when a single pair is produced.

Released: 31-Aug-2015 6:05 AM EDT
Discovered: Tiny Drops of “Perfect” Fluid that Existed in the Early Universe
Department of Energy, Office of Science

Surprisingly, smaller particles colliding with large nuclei appear to produce tiny droplets of quark-gluon plasma. Recent results show that the tiny droplets behave like a liquid not the expected gas. The results support the case that these small particles produce tiny drops of the primordial soup.

Released: 28-Aug-2015 2:15 PM EDT
Combustion’s Mysterious “QOOH” Radicals Exposed
Department of Energy, Office of Science

Good news for those interested in accurately modeling combustion engines, scientists can now discriminate between previously unidentified radicals found in the early stages of the combustion process from similar compounds.

Released: 28-Aug-2015 2:10 PM EDT
Light Speed Ahead!
Department of Energy, Office of Science

Light waves trapped on a metal's surface travel farther than expected. While the distance might seem quite small, it is far enough to possibly be useful in ultra-fast electronic circuits.

Released: 28-Aug-2015 2:05 PM EDT
Scientists Track Ultrafast Formation of Catalyst with X-Ray Laser
Department of Energy, Office of Science

Scientists have – for the first time – precisely tracked the surprisingly rapid process by which light rearranges the outermost electrons of a metal compound and turns it into a catalyst. These details could help scientists predict and control the quick, early steps in reactions vital to renewable fuels.

Released: 28-Aug-2015 1:45 PM EDT
Keeping the Ions Close: A New Activity
Department of Energy, Office of Science

Building better batteries means understanding the chemistry of acids and bases. Now, scientists found that when a strong acid is mixed with water, the negatively and positively charged parts create an unexpected structure.

Released: 28-Aug-2015 1:05 PM EDT
Capturing and Converting Carbon Dioxide in a Single Step
Department of Energy, Office of Science

Turning carbon dioxide from certain power plants into a more valuable chemical would reduce emissions while creating a revenue return. Scientists at the University of Pittsburgh derived a metal-free catalyst that does the trick without the need for expensive, extreme conditions.

Released: 28-Aug-2015 12:05 PM EDT
One in a Million: Analyzing Metabolites in a Single Cell
Department of Energy, Office of Science

With detection limits down to the zeptomolar range (about 600 molecules in a sample), a new technology can analyze the metabolic composition of individual microbial cells, as well as detect the presence of extremely low levels of environmental contaminants.

Released: 28-Aug-2015 11:05 AM EDT
The Importance of Hydration
Department of Energy, Office of Science

In all organisms, water’s pH has a profound effect. Because the interaction of carbon dioxide and water explains the natural acidity of water and all accompanying reactions, it is considered a vital reaction by scientists. Researchers recently made a discovery about how dissolved dioxide bonds.

Released: 11-Aug-2015 3:05 PM EDT
Nanoscale Building Blocks and DNA “Glue” Help Shape 3D Architectures
Department of Energy, Office of Science

Scientists devised a new way of assembling ordered crystals made of nanoparticles. In this process, nanoparticles in the shape of cubes, octahedrons, and spheres coordinate with each other to build structures. The shapes are bound together by complementary DNA molecules on each type of particle.

Released: 11-Aug-2015 2:05 PM EDT
Hundred-Fold Improvement in Temperature Mapping Reveals the Stresses Inside Tiny Transistors
Department of Energy, Office of Science

Used in everything from cell phones to supercomputers, tiny electronic circuits contain transistors that generate performance-compromising heat. Thanks to a team working at the Molecular Foundry, circuit designers can “see” how temperatures change inside the circuits.

Released: 11-Jun-2015 6:05 AM EDT
One Nanocrystal, Many Faces: Connecting the Atomic Surface Structures of Cerium Dioxide Nanocrystals to Catalysis
Department of Energy, Office of Science

A promising catalyst seemed erratic in reducing the toxins released by burning gasoline and other such fuels. The catalyst’s three different surfaces behaved differently. For the first time, researchers got an atomically resolved view of the three structures. This information may provide insights into why the surfaces have distinct properties.



close
2.13917