Newswise — ANN ARBOR, Mich. and CAMBRIDGE, England -- Screening to identify Type 2 diabetes followed by early treatment could result in substantial health benefits, according to new research published today in Diabetes Care that combined large scale clinical observations and innovative computer modelling.

The study, led by researchers at the University of Michigan and the MRC Epidemiology Unit, University of Cambridge, used data from the ADDITION-Europe study of diabetes screening and treatment, which it combined with a computer simulation model of diabetes progression.

This approach revealed that screening followed by treatment led to a reduced risk of cardiovascular disease or death within a five-year follow-up period when compared to patients having no screening.

“Diabetes can be debilitating for patients and costly for healthcare,” says William Herman, M.D., lead author of the paper and a professor at the University of Michigan Medical School. “This research shows that the early identification of diabetes has major health benefits, and supports the introduction of measures such as screening to reduce the time between development of Type 2 diabetes and its treatment.”

Professor Nick Wareham, senior author on the paper and director of the MRC Epidemiology Unit, University of Cambridge, added: “This work shows the value of public health modelling to assess impacts and interventions for diseases such as Type 2 diabetes that pose an increasing public health challenge.

At 10 years after baseline, the simulations predicted that with a delay of 3 years in diagnosis and treatment, 22.4 percent of those with Type 2 diabetes would experience a cardiovascular disease event, such as stroke or heart bypass surgery. This rose to 25.9 percent with a diagnosis delay of six years.

However, if screening and routine care had been implemented, the simulation predicted only 18.4 percent would experience a cardiovascular disease event at 10 years after baseline. The simulated incidence of all-cause mortality was 16.4 percent with a delay of three years and 18.2 percent with a delay of six years, compared to 14.6 percent for screening and treatment.

This means that over 10 years, the model predicts that for people with undiagnosed Type 2 diabetes, screening would be associated with a 29 percent reduction in relative risk of a cardiovascular disease event, compared with a delay of six years in diagnosis and treatment.

This amounts to a 7.5 percent reduction in the absolute risk of adverse cardiovascular outcome in this population. The comparable change in all-cause mortality was 20 percent relative risk and 3.6 percent absolute risk reduction.

More about the study:

The ADDITION-Europe study enrolled people 40 to 69 years of age without known diabetes from 343 general practices in the United Kingdom, Denmark, and the Netherlands. The study had two objectives: to determine if routine screening for Type 2 diabetes was feasible; and to determine if early, intensive, treatment of high blood sugar and cardiovascular risk factors such as blood pressure, cholesterol status and smoking in those diagnosed with Type 2 diabetes reduced the risk of events such as stroke, heart attack, angioplasty, heart bypass surgery, amputation and death.

The researchers found that screening was feasible, but that intensive treatment did not yield statistically significant benefits over routine care, most likely because of the overall high quality of routine diabetes care delivered in general practice. An important question is what impact screening followed by treatment has on the later health outcomes of people with undiagnosed Type 2 diabetes, as previous research indicates that in Europe onset of the disease typically occurs six years before its clinical diagnosis.

Because all participants in ADDITION-Europe were screened for Type 2 diabetes at the start of the study, the researchers could not determine what difference would have been observed had screening and treatment for T2DM been compared with no screening, and therefore no treatment, until the time of eventual clinical diabetes diagnosis.

To answer this question the authors used the Michigan Model for Type 2 Diabetes, which simulates the progression of diabetes and its complications, co-morbidities, quality-of-life, and costs, and provides estimates of cardiovascular events and mortality.

In order to assess the impact of a delay in diagnosis and treatment for Type 2 diabetes, the researchers simulated scenarios where screening did not take place and there was either a three-year or six-year delay before diagnosis, after which routine care was initiated.

Before they used the Michigan Model to assess the impact of a delay in diagnosis and treatment for Type 2 diabetes, the authors first evaluated its ability to predict the previous outcomes of ADDITION-Europe by simulating the impact of the intensive treatment and routine care on the composite cardiovascular outcome and all-cause mortality, and comparing these two scenarios. The results were similar to those of ADDITION-Europe, with little difference between the intensive treatment and routine care scenarios.

Herman says, “Comparing the results of our simulations with the real-world data gave us confidence that our model successfully predicts the impact of delaying diagnosis of Type 2 diabetes on future cardiovascular health outcomes.”

Adds Wareham, “ADDITION-Europe is a large, high quality study, but even so there are limitations in how much direct clinical observation can tell us about the costs and benefits of screening. Computer simulations add an extra dimension which we hope will guide future research as well as the development of public health policy.”

The authors caution that, even without a diabetes diagnosis, individuals might in the interim receive treatment for conditions such as blood pressure or cease smoking, so that the outcomes might be somewhat less pronounced than their model predicts. However, they note that the model assumes that, as in ADDITION-Europe, all participants were recruited from primary care, and were thus already receiving medical care, so this distortion is not expected to be large.

Reference:Herman, WH et al. Early detection and treatment of type 2 diabetes reduces cardiovascular morbidity and mortality: A simulation of the results of the Anglo-Danish-Dutch Study of Intensive Treatment in People with Screen-Detected Diabetes in Primary Care (ADDITION-Europe)”. Diabetes Care (2015) DOI: 10.2337/dc14-2459

About the University of Michigan Medical SchoolSince graduating its first class of six students in 1851, the University of Michigan Medical School has been a leader in preparing the physicians and scientists of the future, conducting pathbreaking research and working with the U-M Hospitals & Health Centers to deliver outstanding care of all kinds. With top-tier national and international rankings for education & research funding, more than 3,000 faculty and nearly 1,900 students and advanced trainees, the school is truly one of the nation's leaders and best.

About the University of CambridgeThe mission of the University of Cambridge is to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence. To date, 90 affiliates of the University have won the Nobel Prize.Founded in 1209, the University comprises 31 autonomous Colleges, which admit undergraduates and provide small-group tuition, and 150 departments, faculties and institutions.

Cambridge is a global university. Its 19,000 student body includes 3,700 international students from 120 countries. Cambridge researchers collaborate with colleagues worldwide, and the University has established larger-scale partnerships in Asia, Africa and America.

The University sits at the heart of one of the world’s largest technology clusters. The ‘Cambridge Phenomenon’ has created 1,500 hi-tech companies, 12 of them valued at over US$1 billion and two at over US$10 billion. Cambridge promotes the interface between academia and business, and has a global reputation for innovation.

About the Medical Research CouncilThe Medical Research Council has been at the forefront of scientific discovery to improve human health. Founded in 1913 to tackle tuberculosis, the MRC now invests taxpayers’ money in some of the best medical research in the world across every area of health. Twenty-nine MRC-funded researchers have won Nobel prizes in a wide range of disciplines, and MRC scientists have been behind such diverse discoveries as vitamins, the structure of DNA and the link between smoking and cancer, as well as achievements such as pioneering the use of randomised controlled trials, the invention of MRI scanning, and the development of a group of antibodies used in the making of some of the most successful drugs ever developed. Today, MRC-funded scientists tackle some of the greatest health problems facing humanity in the 21st century, from the rising tide of chronic diseases associated with ageing to the threats posed by rapidly mutating micro-organisms.