Newswise — Every manufacturing process, from casting and forging, to machining and finishing, induces residual stresses in components. For critical components, such as aircraft wings and turbine blades, these stresses affect the durability and lifetime of the structures and assemblies. Current methods are either destructive (e.g. hole drilling), limited to the surface (labratory X-ray), or rely on large facilities (synchrotron and neutron sources). The new method uses a laboratory source of high energy polychromatic X-ray in transmission to evaluate stresses in the bulk of the sample. The method is portable and can be adapted to any number of demanding applications. There are a number of important advantages that the new instrument has over existing techniques, the main one being that it is a truly non-destructive method for bulk stress measurement. It has transmission measurement capability using a high energy beam. It is capable of producing a penetration depth of 25mm in Aluminium, >5mm in steel and nickel and high X-ray photon flux. The equipment is portable, robust and particularly suitable for use on large and assembled components. The simplicity of the design means that it would be extremely cost effective to produce and reduce significantly the time and degree of technical know-how required to complete the process.

This method is patent application protected. Isis would be happy to talk to companies interested in developing the commercial opportunities for this technology.